Echiniscus testudo (Doyère, 1840): A promising biological control agent against Aflatoxin contamination of Aspergillus flavus

Authors

  • Farahnaz Molavi Department of biolog, faculty of science, islamic Azad universiy, mashhad,Iran

DOI:

https://doi.org/10.5281/zenodo.11193839

Keywords:

Fungi, Biological control, Water quality, water bears, Iran, Mashhad

Abstract

While Mashhad's drinking water is up to par with national standards, several locations have elevated levels of certain fungus, including Aspergillus flavus. A facultative parasite called Aspergillus flavus contaminates a number of significant food crops. Moreover, the pathogen that causes aspergillosis in humans and animals is opportunistic. One of the most dangerous contaminants of raw food commodities throughout pre- and post-harvest crops is Aspergillus flavus, which produces aflatoxins. Metabolites of aflatoxins are very carcinogenic. Even though aflatoxins are often produced during fungal colonization, precipitation may carry them into surface water. The presence of fungus in water has caused considerable alarm since it might endanger water quality and increase the risk of illness in humans. Dosti Dam is the primary water source for Mashhad. Echiniscus testudo specimens have been documented from the rivers that flow to this dam. Tardigrades are a class of microscopic, ubiquitous metazoa distinguished by their extreme intolerance. As an adaptation to extreme environmental conditions, cryptobiosis enables organisms to endure periods of extremely low temperatures or water scarcity, which are inhospitable to life. Due to the resistance and potential for extensive presence of this animal in the Target rivers, we investigated the possibility that it could be utilized to biologically control any form of water pollution in this study. The findings derived from the current investigation demonstrate the considerable potential of Echiniscus testudo as a biological control agent against A. flavus. Mycelial growth was observed to be 98% reduced and spore germination was inhibited by 100% under in vitro conditions.

References

Abd-El-Hack, M.E., Kamal, M., & Altaie, H.A.A. (2023). Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon, 234(107309).

Arakawa, K. (2020). Simultaneous metabarcoding of eukaryotes and prokaryotes to elucidate the community structures within tardigrade microhabitats. Diversity, 12(3), 99-110.

Bagheri, N., Ahmadzadeh, M., Ghasemi, S., Vahidi, N., Maleeha, Q., & Shaukat, Al-Sadat.(2017). Introducing the bacterium Bacillus amyloliquefaciens UTB96 as an effective biological control agent and decomposer of fungal aflatoxin in laboratory conditions. Biological Containment in Herbal Medicine, 6(1), 1-17. (in persian)

Davati, N., & Ghorbani, A. (2023). Discovery of long non-coding RNAs in Aspergillus flavus response to water activity, CO2 concentration, and temperature changes. Scientific Reports, 13(1), 10328-10330.

Delgado, J., Núñez, F., Bermúdez, E., & Asensio, M.A. (2024). Mechanisms of antifungal resistance. In Molecular Medical Microbiology, Jan 1 (pp. 2847-2864). Academic Press.

Dhanamjayulu, P., Boga, R.B., Das, R., & Mehta, A. (2023). Control of aflatoxin biosynthesis by sulfur-containing benzimidazole derivatives: In-silico interaction, biological activity, and gene regulation of Aspergillus flavus. Journal of Biotechnology, ;376:33-44. doi:10.1016/j.jbiotec.2023.09.004

Guidetti, R., Jönsson, K.I., Kaczmarek, Ł., Meier, T., Speed, J.D., Prestø, T., Stur, E., Topstad, L., Cesari, M., Roszkowska, M., & Zawierucha, K. (2023). Tardigrade diversity and community composition across Norwegian boreal forests. Zoological Journal of the Linnean Society, Oct 26:zlad136.

Kasianchuk, N., Rzymski, P., & Kaczmarek, Ł. (2023). The biomedical potential of tardigrade proteins: A review. Biomedicine & Pharmacotherapy, 1(158), 114063.

Khan, R., Ghazali, F.M., & Mahyudin, N.A. (2021). Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel), 7(5), 381.

Krakowiak, M., Bartylak, T., Kmita, H., Kaczmarek, Ł., & Nawrot, R. (2023). Tardigrade proteins: molecular tools in the phenomenon of anhydrobiosis. Zoological Journal of the Linnean Society, Jul 19:zlad066.

Lai, C.C., & Yu, W.L. (2021). COVID-19 associated with pulmonary aspergillosis: A literature review. Journal of Microbiology, Immunology and Infection, 54(1), 46-53.

Molavi, F., Mokhtari, A., Nayebi-Moghaddam, S., Abedian, S.M.J., & Azimi- Taraghdari, Z (2018). First report of the tardigrade Echiniscus testudo (Heterotardigrada: Echiniscidae) from Mashhad district, Iran Running title: Report of the Echiniscus testudo from Iran. Iranian Journal of Animal Biosystematics (IJAB), 14(1), 7-14.

Molavi, F. (2023). Comprehensive microbial study of Mashhad city drinking water. Applied Biology Quarterly, 13 (1). 98-121.

Nji, Q.N., Babalola, O.O., & Mwanza, M. (2023). Soil Aspergillus Species, Pathogenicity and Control Perspectives. Journal of Fungi, 9(7):766.

Oufensou, S., Ul-Hassan, Z., Balmas, V., Jaoua, S., & Migheli, Q. (2023). Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel), 15(1), 45-.

Perry, E., Miller, W.R., & Kaczmarek, Ł. (2019). Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa, 4608(1), 145–154.

Podgórska-Kryszczuk, I. (2023). Biological Control of Aspergillus flavus by the Yeast Aureobasidium pullulans In Vitro and on Tomato Fruit. Plants (Basel), 12(2), 236.

Poprawa, I., Bartylak, T., & Kulpla, A. (2022). Erdmann W, Roszkowska M, Chajec Ł, et al. Verification of Hypsibius exemplaris Gąsiorek et al., 2018 (Eutardigrada; Hypsibiidae) application in anhydrobiosis research. PLos one, 17(3), e0261485.

Roszkowska, M., & Gołdyn, B. (2023). Wojciechowska D, Księżkiewicz Z, Fiałkowska E, Pluskota M, Kmita H, Kaczmarek Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. Plos one, 18(1), e0270386.

Roszkowska, M., Wojciechowska, D., Kmita, H., Cerbin, S., Dziuba, M.K., Fiałkowska, E., Sobkowiak, R., Szydło, W., & Kaczmarek, Ł. (2021). Tips and tricks how to culture water bears: simple protocols for culturing eutardigrades (Tardigrada) under laboratory conditions. The European Zoological Journal, 88(1), 449-65.

Saber, H., Chebloune, Y., & Moussaoui, A. (2022). Molecular Characterization of Aspergillus flavus Strains Isolated from Animal Feeds. Polish Journal of Microbiology, 71(4), 589-599.

Schill, R.O., & Jönsson, K.I. (2011). Pfannkuchen M, Brümmer F. Food of tardigrades: a case study to understand food choice, intake and digestion. Journal of Zoological Systematics and Evolutionary Research, 49(2), 66-70.

Smith, F.W., Game, M., Mapalo, M.A., Chavarria, R.A., Harrison, T.R., & Janssen, R. (2023). Developmental and genomic insight into the origin of the tardigrade body plan. Evolution and development, 18,e12457. https://doi.org/10.1111/ede.12457

Stec, D., Arakawa, K., & Michalczyk, L. (2018). An integrative description of Macrobiotus shonaicus sp. nov. (Tardigrada: Macrobiotidae) from Japan with notes on its phylogenetic position within the hufelandi group. PLoS ONE, 13, e0192210.

Sugiura, K., Matsumoto, M., & Kunieda, T. (2022). Description of a model tardigrade Paramacrobiotus metropolitanus sp. Nov.(Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa, 5134(1), 92-112.‏

Tian, F., Woo, S.Y., Lee, S.Y., Park, S.B., Zheng, Y., & Chun, H.S. (2022). Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics (Basel), 11(12), 1727. Published 2022 Dec 1. doi:10.3390/antibiotics11121727.

Tibbs-Cortes, L.E., Tibbs-Cortes, B.W., & Schmitz-Esser, S. (2022). Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiology, 13:866930. Published 2022 Jul 18. doi:10.3389/fmicb.2022.866930.

Van-der, W.P.W., Dignum, M., Donocik, A., & Prest, E.I. (2023). Influence of Temperature on Growth of Four Different Opportunistic Pathogens in Drinking Water Biofilms. Microorganisms, 11(6), 1574.

Wang, T., Sun, D., Zhang, Q., & Zhang, Z. (2021). China's drinking water sanitation from 2007 to 2018: a systematic review. Science of the Total Environment,757(1), 143735-143923.

Wang, Y., Ma, B., & Zhao, J. (2023).. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine [published online ahead of print. Environmental Science Technoogy, 10.1021/acs.est.3c05703. doi:10.1021/acs.est.3c05703

Wilanowska, P.A., Rzymski, P., & Kaczmarek, Ł. (2024). Long-Term Survivability of Tardigrade Paramacrobiotus experimentalis (Eutardigrada) at Increased Magnesium Perchlorate Levels: Implications for Astrobiological Research. Life, 14(3), 335-349.‏

Zhang, Y., Deng, J., Qin, B., Zhu, G., Zhang, Y., Jeppesen, E., & Tong, Y. (2023). Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundamental Research, 3(2), 265-73.

Downloads

Published

2024-05-14

How to Cite

Molavi, F. (2024). Echiniscus testudo (Doyère, 1840): A promising biological control agent against Aflatoxin contamination of Aspergillus flavus. Journal of Wildlife and Biodiversity, 8(3), 111–120. https://doi.org/10.5281/zenodo.11193839