Predictive biological activity of newly synthesized hydrazone compounds derived from indomethacin
DOI:
https://doi.org/10.5281/zenodo.10246323Keywords:
Indomethacin, biological activity, QSAR, DFTAbstract
New derivatives of hydrazone have been successfully created, specifically 2-(1-(Aryl)-5-methoxy-2-methyl-1H-indol-3-yl)-N'-(2-chlorobenzylidene) acetohydrazide. The transformation of Indomethacin ester into hydrazide was achieved through a reaction with hydrazine hydrate in absolute ethanol, followed by the reaction of the resulting hydrazide with aromatic aldehydes. The structures of these newly synthesized hydrazones were validated through IR, 1HNMR, and 13CNMR analyses. Each compound's energies were optimized by utilizing density functional theory (DFT) for theoretical calculations. By employing a quantitative structure-activity relationship (QSAR) mathematical model, this optimization enables the prediction of the biological activity of the compounds. Therefore, this research centers on the synthesis and characterization of hydrazone derivatives of Indomethacin, emphasizing the use of QSAR modeling to connect biological activity and molecular structure. The study sheds light on the methods employed for compound synthesis and characterization, contributing valuable insights into the properties and potential applications of these innovative derivatives through the application of computational chemistry.
References
Abdulrahman, S. H., Al-khayat, R. Z., Alhamdany, A. Y., & Ali, W. K. (2022). QSAR of antioxidant activity of some novel sulfonamide derivatives. Egyptian Journal of Chemistry, 65(8), 489–497.
Ahmad, M. M., Alwi, S. R. W., Jamaludin, R., Chua, L. S., & Mustaffa, A. A. (2017). Quantitative structure-activity relationship model for antioxidant activity of flavonoid compounds in traditional chinese herbs. Chemical Engineering Transactions, 56, 1039–1044.
Atrushi, K. S., Ameen, D. M., Abdulrahman, S. H., & Abachi, F. T. (2023). Density Functional Theory, ADME, and Molecular Docking of Some Anthranilic Acid Derivatives as Cyclooxygenase Inhibitors.
Awantu, A. F., Ayimele, G. A., Bankeu, J. J. K., Nantia, E. A., Fokou, P. V. T., Boyom, F. F., Nfor, E. N., Lenta, B. N., & Ngouela, S. A. (2021). Synthesis, Molecular Structure, Anti-Plasmodial, Antimicrobial and Anti-Oxidant Screening of (E)-1-(Phthalazin-1-yl)-1-[(Pyridin-2-yl) Ethylidene] Hydralazine and 1-[2-(1-(pyridine-3-yl) ethylidene) hydrazinyl] phthalazine. International Journal of Organic Chemistry, 11(03), 91–105.
Badawi, W. A., Rashed, M., Nocentini, A., Bonardi, A., Abd-Alhaseeb, M. M., Al-Rashood, S. T., Veerakanellore, G. B., Majrashi, T. A., Elkaeed, E. B., & Elgendy, B. (2023). Identification of new 4-(6-oxopyridazin-1-yl) benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: synthesis, biological evaluations and modelling insights. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2201407.
Baviskar, B. A., Deore, S. L., & Jadhav, A. I. (2020). 2D and 3D QSAR studies of saponin analogues as antifungal agents against Candida albicans. Journal of Young Pharmacists, 12(1), 48.
Chen, C., Nie, Y., Xu, G., Yang, X., Fang, H., & Hou, X. (2019). Design, synthesis and preliminary bioactivity studies of indomethacin derivatives as Bcl-2/Mcl-1 dual inhibitors. Bioorganic & Medicinal Chemistry, 27(13), 2771–2783.
Ehrenson, S. (1964). Theoretical Interpretations of the Hammett and Derivative Structure‐Reactivity Relationships. Progress in Physical Organic Chemistry, 195–251.
Farrag, A. M. (2016). Synthesis and biological evaluation of novel indomethacin derivatives as potential anti‐colon cancer agents. Archiv Der Pharmazie, 349(12), 904–914.
Fraga, A. G. M., Rodrigues, C. R., de Miranda, A. L. P., Barreiro, E. J., & Fraga, C. A. M. (2000). Synthesis and pharmacological evaluation of novel heterotricyclic acylhydrazone derivatives, designed as PAF antagonists. European Journal of Pharmaceutical Sciences, 11(4), 285–290.
Gliszczyńska, A., & Nowaczyk, M. (2021). Lipid formulations and bioconjugation strategies for indomethacin therapeutic advances. Molecules, 26(6), 1576.
Hanna, M. M. (2012). New pyrimido [5, 4-e] pyrrolo [1, 2-c] pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies. European Journal of Medicinal Chemistry, 55, 12–22.
Irannejad, H., Kebriaieezadeh, A., Zarghi, A., Montazer-Sadegh, F., Shafiee, A., Assadieskandar, A., & Amini, M. (2014). Synthesis, docking simulation, biological evaluations and 3D-QSAR study of 5-Aryl-6-(4-methylsulfonyl)-3-(metylthio)-1, 2, 4-triazine as selective cyclooxygenase-2 inhibitors. Bioorganic & Medicinal Chemistry, 22(2), 865–873.
Jia, Q., Zhao, Y., Yan, F., & Wang, Q. (2018). QSAR model for predicting the toxicity of organic compounds to fathead minnow. Environmental Science and Pollution Research, 25, 35420–35428.
Khalil, R. A., & Abdulrahman, S. H. (2022). Newly developed statistically intensive QSAR models for biological activity of isatin derivatives. Studia Universitatis Babes-Bolyai, Chemia, 67(1), 139–152.
Lgaz, H., Chung, I.-M., Albayati, M. R., Chaouiki, A., Salghi, R., & Mohamed, S. K. (2020). Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: An experimental and computational study. Arabian Journal of Chemistry, 13(1), 2934–2954.
Lgaz, H., Salghi, R., Masroor, S., Kim, S.-H., Kwon, C., Kim, S. Y., Yang, Y.-J., & Chung, I.-M. (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic-scale DFT and atomic-scale molecular dynamics. Journal of Molecular Liquids, 308, 112998.
Lgaz, H., Zehra, S., Albayati, M. R., Toumiat, K., El Aoufir, Y., Chaouiki, A., Salghi, R., Ali, I. H., Khan, M. I., & Chung, I.-M. (2019). Corrosion inhibition of mild steel in 1.0 M HCl by two hydrazone derivatives. International Journal of Electrochemical Science, 14(7), 6667–6681.
Mashayekhi, V., Tehrani, K. H. M. E., Amidi, S., & Kobarfard, F. (2013). Synthesis of novel indole hydrazone derivatives and evaluation of their antiplatelet aggregation activity. Chemical and Pharmaceutical Bulletin, 61(2), 144–150.
Pandey, S. K., Ojha, P. K., & Roy, K. (2020). Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs). Chemosphere, 252, 126508.
Piir, G., Kahn, I., García-Sosa, A. T., Sild, S., Ahte, P., & Maran, U. (2018). Best practices for QSAR model reporting: physical and chemical properties, ecotoxicity, environmental fate, human health, and toxicokinetics endpoints. Environmental Health Perspectives, 126(12), 126001.
Popiołek, Ł. (2021). Updated information on antimicrobial activity of hydrazide–hydrazones. International Journal of Molecular Sciences, 22(17), 9389.
Selim, Y. A., Abd El‐Azim, M. H. M., & El‐Farargy, A. F. (2018). Synthesis and Anti‐inflammatory Activity of Some New 1, 2, 3‐Benzotriazine Derivatives Using 2‐(4‐Oxo‐6‐phenylbenzo [d][1, 2, 3] triazin‐3 (4H)‐yl) acetohydrazide as a Starting Material. Journal of Heterocyclic Chemistry, 55(7), 1756–1764.
Wahbeh, J., & Milkowski, S. (2019). The use of hydrazones for biomedical applications. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 24(2), 161–168.
Wiklund, P., & Bergman, J. (2006). The chemistry of anthranilic acid. Current Organic Synthesis, 3(3), 379–402.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Wildlife and Biodiversity
This work is licensed under a Creative Commons Attribution 4.0 International License.