Morphological and agronomic characterization of colored cotton cultivars of G. hirsutum L.
DOI:
https://doi.org/10.5281/zenodo.11098144Keywords:
G.hirsutum L., colored cotton, morphology, trait, fiber length, seed weight, fiber yieldAbstract
Nowadays, the demand for organic products is increasing. Breeding of naturally colored cotton allows for saving the high costs of dyeing the fiber and obtaining a natural product that is harmless to the human body. Natural colored fiber has air permeable, antiseptic and hydrophobic properties. However, the use of natural colored cotton in the textile industry is limited due to its low fiber quality. Solving this problem requires interdisciplinary research on colored cotton. In the article, morphological traits of natural brown and green cotton cultivars of G.hirsutum L. cotton - duration of vegetation period, plant height, leaf shape, color and hairiness of the main stem, boll shape, type of sympodial branching and fiber color also, agronomic traits – a boll weight, fiber yield and index, fiber length, weight of 1000 seeds were determined and analysis results were presented. The obtained results showed that the brown cotton samples are medium-ripening, the green cotton cultivars are late-ripening, and the plant height of the green cotton cultivars is higher compared to the brown cotton cultivars. Fiber length was longer in the cultivars cone-oval shape of boll than in cultivars with round shape. Fiber length was higher in green fiber cultivars A-800 and 010764 than dark brown fiber cultivars 011250 and 010108. In contrast, brown fiber cultivars had higher indicators than green fiber cultivars in terms of fiber yield, index and boll weight. Green cotton cultivar 011460 with low fiber yield had the highest index of 1000 seeds weight. In terms of cotton yield, dark brown fiber cultivar 011250 (97.4±2.0g) showed a higher index compared to other cultivars. This shows that cultivar 011250 can be used as a raw material to increase the yield of colored cotton.
References
Amanov, B., Muminov, K., Samanov, S., Arslanov, D., Tursunova, N (2022). Cotton introgressive line assessment through seed cotton yield and fiber quality characteristics. Sabrao Journal of Breeding and Genetics, 2022, 54(2), 321–330.
Amanov, B., Abdiev, F., Muminov, K., Shavkiev, J., Mamedova, F( 2020) Valuable economic indicators among hybrids of Peruvian cotton genotypes. Plant Cell Biotechnology and Molecular Biology, 21(67-68), 35–46.
Atav, R., Yüksel, M. F., Dilden, D. B., & İzer, G. (2022). Colored cotton fabric production without dyeing within the sustainablity concept in textile. Industrial Crops and Products, 187, 115419.
Barros, M. A. L., Silva, C. R. C. D., Lima, L. M. D., Farias, F. J. C., Ramos, G. A., & Santos, R. C. D. (2022). A review on evolution of cotton in Brazil: GM, white, and colored cultivars. Journal of Natural Fibers, 19(1), 209-221.
Bekmuxamedov A.A., Nasirillaev B.U., Babaev S.K., Raximov A.K., Ergashev M.M., Latipova E.A., Bobohujaev S.U (2014). O‘simliklar genetikasi va genetik injeneriya uslubiy qo’llanma. Toshkent.165.
Campbell, B. T., May, O. L., Howle, D. S., & Jones, D. C. (2009). Registration of PD 99035 germplasm line of cotton. Journal of plant registrations, 3(1), 73-76. https://doi.org/10.3198/jpr2008.03.0140crg
Carvalho, L. P. D., Farias, F. J. C., Lima, M. M. D. A., & Rodrigues, J. I. D. S. (2014). Inheritance of different fiber colors in cotton (Gossypium barbadense L.). Crop Breeding and Applied Biotechnology, 14, 256-260.
Chhabra, J., Suri, M., and Parmar, M.S. (2010) Naturally coloured cotton Asian Textile Journal March. 25.
Chorshanbiev, N.E., Nabiev, S.M., Azimov, A.A., Shavkiev, J.S., Pardaev, E.A., Quziboev, A.O (2023). Inheritance of morpho-economic traits and combining ability analysis in intraspecific hybrids of Gossypium barbadense L. SABRAO J. Breed. Genet. 55(3): 640-652.
Crews, P. C., & Hustvedt, G. (2005). The ultraviolet protection factor of naturally-pigmented cotton. The Journal of Cotton Science, 9, 47–55.
Dodamani, M. T., & Kunnal, L. B. (2010). An economics analysis of contract farming of organically produced, natural colour cotton in Karnataka. Agriculture Update, 5(1/2), 11-16.
Feng, H., Guo, L., Wang, G., Sun, J., Pan, Z., He, S., ... & Du, X. (2015). The negative correlation between fiber color and quality traits revealed by QTL analysis. PLoS One, 10(6), e0129490 https://doi.org/10.1371/journal.pone.0129490.
Fursov, N. V. (1995). Varieties and lines of cotton with naturally colored fiber and leaf fall and their practical use (Doctoral dissertation, Moscow Agricultural Academy named after KA Timiryazev). 85-88.
Gong, W., Du, X., Jia, Y., & Pan, Z. (2018). Color cotton and its utilization in China. Cotton Fiber: Physics, Chemistry and Biology, 117-132. https://doi.org/10.1007/978-3-030-00871-0_6
Günaydin, G.K., Avinc, O., Palamutcu, S., Yavas, A., Soydan, A.S. (2019). Naturally Colored Organic Cotton and Naturally Colored Cotton Fiber Production. In: Gardetti, M., Muthu, S. (eds) Organic Cotton. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8782-0_4
https://store.textileexchange.org/product/2016
https://textileexchange.org/app/uploads/2021
https://textileexchange.org/app/uploads/2022
Jumanov, D. T., Kuziboyev, J. B., & Izzatullayev, L. A. (2022). Agricultural technology and cotton yield. IOP Conference Series: Earth and Environmental Science (1112, 1, 012025).. https://doi.org/10.1088/1755-1315/1112/1/012025
Khan, A. I., Awan, F. S., Sadia, B., Rana, R. M., & Khan, I. A. (2010). Genetic diversity studies among coloured cotton genotypes by using RAPD markers. Pak. J. Bot, 42(1), 71-77.
Li, X., Ouyang, X., Zhang, Z., He, L., Wang, Y., Li, Y., & Xiao, Y. (2019). Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 294, 469-478. https://doi.org/10.1007/s00438-018-1525-3
Li, Y. J., Sun, S. C., Zhang, X. Y., Wang, X. F., Liu, Y. C., Fei, X. U. E., & Jie, S. U. N. (2018). New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. Journal of Integrative Agriculture, 17(1), 46-53. https://doi.org/10.1016/S2095-3119(17)61692-7
Ma, M., Li, R., Du, Y., Tang, Z., & Zhou, W. (2013). Analysis of antibacterial properties of naturally colored cottons. Textile Research Journal, 83(5), 462-470. https://journals.sagepub.com/doi/pdf/10.1177/0040517512447585
Makamov, A., Shavkiev, J., Kholmuradova, M., Boyqobilov, U., Normamatov, I., Norbekov, J., Khusenov, N., Kushakov, SH., Yuldasheva, Z., Khoshimov, S., Buriev, Z (2023). Cotton genotypes appraisal for morpho-physiological and yield contributing traits under optimal and deficit irrigated conditions. SABRAO J. Breed. Genet. 55(1): 74-89.
Matniyazova, H., Nabiev, S., Azimov, A., Shavkiev, J. (2022). “Genetic variability and inheritance of physiological and yield traits in upland cotton under various water regimes”. SABRAO Journal of Breeding and Genetics, 54(5), 976-992.
Matusiak, M., Kechagia, U., Tsaliki, E., & Frydrych, I. K. (2007). Properties of the naturally colored cotton and its application in the ecological textiles. In Proc. Fourth World Cotton Research Conference, Lubbock, TX (10-14).
Musaev D.A. va boshqalar (2011). Genetika va seleksiya asoslari. Toshkent.”Fan va texnologiya nashriyoti”. 486.
Muminov, K., Amanov, B., Buronov, A., Tursunova, N., Umirova, L(2023).Analysis of yield and fiber quality traits in intraspecific and interspecific hybrids of cotton. Sabrao Journal of Breeding and Genetics, 55(2), 453–462.
Narkizilova, G. N., Mirakhmedov, M. S., & Boboev, S. G. (2022). Inheritance and formation of some economically valuable traits in cotton hybrids F1, F2 AND F3. American Journal Of Agriculture And Horticulture Innovations, 2(12), 47-51.
Nivedha, R., Rajeswari, S., Premalatha, N., & Sritharan, N. (2020). Inheritance study for lint colour in naturally brown coloured upland cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding, 11(02), 550-555. https://doi.org/10.37992/2020.1102.092
Rathinamoorthy, R., & Parthiban, M. (2017). Colored cotton: Novel eco-friendly textile material for the future. Handbook of ecomaterials, 1-21. (https://doi.org/10.1007/978-3-319-68255-6_91)
Sanaev, N. N., Gurbanova, N. G., Azimov АА, N. Т., & Shavkiev, J. S. H. (2021). Inheritance of the plant shape, trait of the varieties and introgressive lines of G.hirsutum L. in drought conditions. Plant Cell Biotechnology and Molecular Biology, 22(25&26), 122-129.
Shavkiev, J., Azimov, A., Khamdullaev, S., Karimov, H., Abdurasulov, F., Nurmetov, K. (2023). Morpho-physiological and yield contributing traits of cotton varieties with different tolerance to water deficit. Journal of Wildlife and Biodiversity, 7(4), 214-228.
Shavkiev, J., Azimov, A., Nabiev, S., Khamdullaev, S., Amanov, B., Kholikova, M., Matniyazova, H., Yuldashov, U. (2021). “Comparative performance and genetic attributes of upland cotton genotypes for yield-related traits under optimal and deficit irrigation conditions”. SABRAO Journal of Plant Breeding and Genetics, 53(2), 157-171.
Shavkiev, J., Nabiev, S., Azimov, A., Chorshanbiev, N., Nurmetov, K. (2020). “Pima cotton (GOSSYPIUM BARBADENSE L.) lines assessment for drought tolerance in Uzbekistan”, SABRAO Journal of Breeding and Genetics, 54(3), 524-536. http://doi.org/10.54910/sabrao2022.54.3.6
Simongulyan, N. G. (1984). Genetic analysis of fiber color in upland cotton. Agron Abroad: Cotton, 3, 172-191.
Sun, J., Sun, Y., & Zhu, Q. H. (2021). Breeding next-generation naturally colored cotton. Trends in Plant Science, 26(6), 539-542.
Tang, Z., Fan, Y., Zhang, L., Zheng, C., Chen, A., Sun, Y., & Zeng, F. (2021). Quantitative metabolome and transcriptome analysis reveals complex regulatory pathway underlying photoinduced fiber color formation in cotton. Gene, 767, 145180.
Tursunov, Y. B., & Abzalov, M. F. (2020). The Genetics of Anthocyanin Pigmentation (of Colour) and Chlorophylls Content of G. hirsutum L. Cotton Plant. American Journal of Plant Sciences, 11(9), 1405-1413. https://doi.org/10.4236/ajps.2020.119101
White J.W., Andrade-Sanchez P., Gorea M.A. et al. (2012). Field-based phenomics for plant genetics research. Field Crops Res. 133. 101–112.
Zhang Y., Cheng Y., Ya H., Xu S., Han J. (2015): Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in Plant Science, 6: 964. https://doi.org/10.3389/fpls.2015.00964