The selected insect families and their seasonal dynamics in the Mordovia State nature reserve in the burned areas of 2021

Authors

  • Alexander B. Ruchin Joint Directorate of the Mordovia State Nature Reserve and National Park «Smolny», Russia

DOI:

https://doi.org/10.5281/zenodo.10162131

Keywords:

insects, forest fire, abundance, severity of forest fire

Abstract

Forest fires are one of the main environmental factors that change the habitat and initiate the change of new forest communities. Burned areas are habitats representing a wide range of ecological niches, which can be used by many species of insects. It is especially interesting to observe the restoration processes in the burned areas in the first years after the fires. In 2021-2022, on the territory of Mordovia State Nature Reserve, studies were conducted on the plots that had been burned in 2010 and 2021. Traps with bait based on beer and sugar were used for the study. Our results indicate that the largest number of flying insect forms in the first year after the fire was higher in unburned areas, and the parts of burnt areas located in the depths of the burned territory had the smallest number. The number of beetles was greatest in areas which were not affected by fire. Lepidoptera immediately returned to the site of the fire in 2021. Already the next year their number became much higher. There was no clear dependence on Hymenoptera. The number of Neuroptera and Blattodea was higher in the burned areas of 2010. The seasonal dynamics of Coleoptera in the hot springs was one-peak, whereas in unburned areas it is usually two-peak.

References

Abbott, I. (1984). Changes in the abundance and activity of certain soil and litter fauna in the jarrah forest of Western Australia after a moderate intensity fire. Soil Research. 22, 463-469. https://doi.org/10.1071/SR9840463

Adedoja, O., Dormann, C. F., Kehinde, T., Samways, M. J. (2019). Refuges from fire main-tain pollinaёtor–plant interaction networks. Ecol. Evol. 9, 5777–5786.

Agee, J. K. (1996). The influence of forest structure on fire behavior. Proceedings of the 17th annual forest vegetation management conference. Redding, C. A.: University of California. P. 52–68.

Allemand, R., Aberlenc, H.-P. (1991). Une méthode efficace d’echantillonage de l’entomofaune des frondaisons: le piège attractif aérien. Bulletin de la Société Ento-mologique Suisse. 64, 293–305.

Arnan, X., Rodrigo, A., Retana, J. (2006). Post‐fire recovery of Mediterranean ground ant communities follows vegetation and dryness gradients. Journal of Biogeography. 33(7), 1246–1258.

Artsybashev, E. S. (2014). The impact of fires on forest biogeocenoses. Biosphere. 6(1), 53–59.

Asbeck, T., Sabatini, F., Augustynczik, A. L., Basile, M., Helbach, J., Jonker, M., et al. (2021). Biodiversity response to forest management intensity, carbon stocks and net primary production in temperate montane forests. Scientific Reports. 11(1), 1–11. https://doi.org/10.1038/s41598-020-80499-4

Atutova, Zh. V. (2023). Post-fire restoration of pine forests in the Badary area, Tunkinskiy National Park, Russia. Nature Conservation Research. 8(2), 22–32. https://dx.doi.org/10.24189/ncr.2023.010

Barkalov, A. V., Khruleva, O. A. (2021). Hoverflies (Diptera, Syrphidae) of Wrangel Island (Chukotka Autonomous Okrug, Russia). Nature Conservation Research. 6(1), 78–87. https://dx.doi.org/10.24189/ncr.2021.013

Bess, E. C., Parmenter, R. R., Mccoy, S., Molles, M. C. (2002). Responses of a riparian for-est-floor arthropod community to wildfire in the middle Rio Grande Valley, New Mex-ico. Environmental Entomology. 31(5), 774–784.

Buddle, C. M., Langor, D. W., Pohl G. R., Spence, J. R. (2006). Arthropod responses to har-vesting and wildfire: Implications for emulation of natural disturbance in forest man-agement. Biological Conservation. 128, 346–357. doi:10.1016/j.biocon.2005.10.002

Boulanger, Y., Sirois, L. (2007). Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the North Boreal Forest of Quebec. Environ. Èntomol. 36, 128–141.

Campbell, J. W., Hanula, J. L., Waldrop, T. A. (2007). Effects of prescribed fire and fire sur-rogates on floral visiting insects of the blue ridge province in North Carolina. Biologi-cal Conservation. 134(3), 393–404. https://doi.org/10.1016/j.biocon.2006.08.029

Certini, G. Effects of fire on properties of forest soils: a review. Oecologia. (2005). 143(1), 1–10. DOI: 10.1007/s00442-004-1788-8

Certini, G., Moya, D., Lucas-Borja, M. E., Mastrolonardo, G. (2021). The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management. 488, 118989. https://doi.org/10.1016/j.foreco.2021.118989

Chia, E. K., Bassett, M., Nimmo, D. G., et al. (2015). Fire severity and fire-induced land-scape heterogeneity affect arboreal mammals in fire-prone forests. Ecosphere. 6, art190. https://doi.org/10.1890/ES15-00327.1

Chornous, O. P. (2022). Cenopopulation of Epipactis helleborine (Orchidaceae) in forest eco-systems that have been anthropogenically transformed to various degrees. Biosystems Diversity. 30(2), 198-204. DOI: 10.15421/012221

Colom, P., Traveset, A., Carreras, D., Stefanescu, C. (2021). Spatio‐temporal responses of butterflies to global warming on a Mediterranean island over two decades. Ecological Entomology. 46(2), 262–272. https://doi.org/10.1111/een.12958

Cochrane, M. A. (ed.) Tropical fire ecology. Climate change, land use, and ecosystem dy-namics. Springer, Berlin. 2009.

Cruz-Sánchez, M. A., Asís, J. D., Gayubo, S. F. et al. (2011). The effects of wildfire on Sphe-ciformes wasp community structure: the importance of local habitat conditions. Journal of Insect Conservation. 15, 487–503. https://doi.org/10.1007/s10841-010-9322-2

Dedyukhin, S. V. (2022). Fauna and biotopic distribution of weevils (Coleoptera: Curcu-lionoidea) of the Zhiguli State Nature Reserve, Russia. Nature Conservation Research. 7(4), 55-69. https://dx.doi.org/10.24189/ncr.2022.036

Duelli, P., Obrist, M. K., Flückiger, P. F. (2002). Forest edges are biodiversity hotspots – also for Neuroptera. Acta Zoologica Hungarica. 48 (Suppl. 2), 75–87.

Duelli, P., Wermelinger, B., Moretti, M., Obrist, M. K. (2019). Fire and windthrow in forests: Winners and losers in Neuropterida and Mecoptera. Alpine Entomology. 3, 39–50. https://doi.org/10.3897/alpento.3.30868

Duffus, N. E., Christie, C. R., Morimoto, J. (2021). Insect cultural services: how insects have changed our lives and how can we do better for them. Insects. 12(5), 377. https://doi.org/10.3390/insects12050377

Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G., Sanesi, G. (2012). The spatial and tem-poral effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 263, 262–267.

Evans, W. G. (1972). Attraction of Insects to Forest Fires. In Tall Timbers Conference on Ecological Animal Control by Habitat Management 3; Tall Timbers Research Station: Tallahasse, FL, USA, Vol. 3, P. 115–127.

Geraskina, A. P., Tebenkova, D. N., Ershov, D. V., Ruchinskaya, E. V., Sibirtseva, N. V., Lukina, N. V. (2021). Fires as a factor of loss of biodiversity and functions of forest ecosystems. Questions of forest science. 4(2), Article No82. DOI: 10.31509/2658-607x-202142-11

Gongalsky, K. B. (2017). Perfugia as a mechanism for the recovery of soil fauna after eco-system disturbances. Russian Journal of Ecosystem Ecology. 2(4). DOI: 10.21685/2500-0578-2017-4-3

Gongalsky, K. B., Persson, T. (2013). Recovery of soil macrofauna after wildfires in boreal forests. Soil Biology & Biochemistry. 57, 182–191. http://dx.doi.org/10.1016/j.soilbio.2012.07.005

Gongalsky, K. B., Malmström, A., Zaitsev, A. S., Shakhab, S. V., Bengtsson, J., Persson, T. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heter-ogeneous landscape. Applied Soil Ecology. 59, 73–86.

Gustafsson, L., Berglind, M., Granström, A., Grelle, A., Isacsson, G., Kjellander, P., et al. (2019). Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scandinavian Journal of Forest Research. 34(4), 234–253. https://doi.org/10.1080/02827581.2019.1603323

Hanula, J. L., Ulyshen, M. D., Wade, D. D. (2012). Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests. 3(2), 317–331. https://doi.org/10.3390/f3020317

Harris, L., Taylor, A. H. (2015). Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecosystems. 18(7), 1192–1208. DOI: 10.1007/s10021-015-9890-9

Filimonova, L. V. (2021). Vegetation dynamics in the Kostomuksha State Nature Reserve (Russia) and surroundings against changes in the natural environment during the Holo-cene. Nature Conservation Research. 6(Suppl.1), 98–115. https://dx.doi.org/10.24189/ncr.2021.019

Johnson, S. D., Horn, K. C., Savage, A. M., Windhager, S., Simmons, M. T., Rudgers, J. A. (2008). Timing of prescribed burns affects abundance and composition of arthropods in the Texas Hill Country. Southwest Nat. 53, 137–145.

Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., et al. (2016). Chang-ing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Envi-ron. 14, 369–378.

Kastridis, A., Stathis, D., Sapountzis, M., Theodosiou, G. (2022). Insect outbreak and long-term post-fire effects on soil erosion in Mediterranean Suburban Forest. Land. 11(6), 911. https://doi.org/10.3390/land11060911

Khapugin, A. A., Vargot, E. V., Chugunov, G. G. (2016). Vegetation recovery in fire-damaged forests: a case study at the southern boundary of the taiga zone. Forestry Studies. 64, 39–50. DOI: 10.1515/fsmu-2016-0003

Kharitonova, A. O., Kharitonova, T. I. (2021). The effect of landscape pattern on the 2010 wildfire spread in the Mordovia State Nature Reserve, Russia. Nature Conservation Re-search. 6 (2), 29-41. https://dx.doi.org/10.24189/ncr.2021.022

King, J. R., Warren, R. J., Bradford, M. A. (2013). Social Insects Dominate Eastern US Tem-perate Hardwood Forest Macroinvertebrate Communities in Warmer Regions. PLoS ONE. 8(10), e75843. https://doi.org/10.1371/journal.pone.0075843

Koltz, A. M., Burkle, L. A., Pressler, Y., Dell, J. E., Vidal, M. C., Richards, L. A., Murphy, S. M. (2018). Global change and the importance of fire for the ecology and evolution of insects. Current Opinion in Insect Science. 29, 110–116. https://doi.org/10.1016/j.cois.2018.07.015

Kral, K. C., Limb, R. F., Harmon, J. P., Hovick, T. J. (2017). Arthropods and fire: previous research shaping future conservation. Rangeland Ecology and Management. 70(5), 589–598. DOI: 10.1016/j.rama.2017.03.006

Krugova, T. M. (2010). Pyrogenic transformation of the ant population of meadows-deposits and rare-coniferous larch forests in the Tigirek Nature Reserve. Proceedings of the Tigirek State Nature Reserve. 3, 22–29.

Kupriyanov, D. A., Novenko, Е. Yu. (2021). Reconstruction of the holocene forest fires histo-ry in the southern part of the Mordovia State Natural Reserve based on the macroachar-coal analysis of the peat. Proceedings of the Mordovia State Nature Reserve. 26, 176-192.

Lazarina, M., Devalez, J., Neokosmidis, L., Sgardelis, S. P., Kallimanis, A. S., Tscheulin, T., et al. (2019). Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology. 100(3), e02615. https://doi.org/10.1002/ecy.2615

Lentile, L.B., Morgan, P., Hudak, A.T., Bobbitt, M. J., Lewis, S. A., Smith, A. M. S., Ro-bichaud, P. R., et al. (2007). Post-fire burn severity and vegetation response following eight large wildfires across the Western United States. Fire Ecol. Spec. Issue. 3, 91–108.

MacDonald, J. F., Matthews, R. W. (1981). Nesting biology of the eastern yellowjacket, Ves-pula maculifrons (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 54, 433–457.

Maguire, D. Y., Buddle, C. M., Bennett, E. M. (2016). Within and Among Patch Variability in Patterns of Insect Herbivory Across a Fragmented Forest Landscape. PLoS ONE. 11(3), e0150843. https://doi.org/10.1371/journal.pone.0150843

Makarkin, V. N., Ruchin, A. B. (2020). Materials on the Neuroptera and Raphidioptera fauna in Mordovia and adjacent regions of European Russia. Proceedings of the Mordovia State Nature Reserve. 24, 161–181.

Makarkin, V. N., Ruchin, A. B. (2021). New data on Neuroptera and Raphidioptera of the Middle Volga Region. Proceedings of the Mordovia State Nature Reserve. 27, 201–235.

Mason, Jr. S. C., Shirey, V., Ponisio, L. C., Gelhaus, J. K. (2021). Responses from bees, but-terflies, and ground beetles to different fire and site characteristics: a global meta-analysis. Biological Conservation. 261, 109265. https://doi.org/10.1016/j.biocon.2021.109265

McCullough, D. G., Werner, R. A., Neumann, D. (1998). Fire and insects in northern and bo-real forest ecosystems of North America. Annual review of entomology. 43(1), 107-127.

Moretti, M., Duelli, P., Obrist, M. (2006). Biodiversity and resilience of arthropod communi-ties after fire disturbance in temperate forests. Oecologia. 149, 312–327. DOI: 10.1007/s00442-006-0450-z

Niklasson, M., Granström, A. (2000). Numbers and sizes of fires, long-term spatially explicit fire history in a Swedish boreal landscape. Ecology. 81, 1484–1499. DOI: 10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2

Perov, V. V., Aleksanov, V. V. (2022). Beetles sampled using window traps in the Federally-Subordinated Natural Sanctuary “Gorodskoi Bor” in Kaluga City. Proceedings of the Mordovia State Nature Reserve. 30, 169–192. https://dx.doi.org/10.24412/cl-31646-2686-7117-2022-30-169-192

Popkova, T. V., Zryanin, V. A., Ruchin, A. B. (2021). The ant fauna (Hymenoptera: Formici-dae) of the Mordovia State Nature Reserve, Russia. Nature Conservation Research. 6 (3), 45-57. https://dx.doi.org/10.24189/ncr.2021.037

Ribeiro, D. B., Batista, R., Prado, P. I., Brown, Jr. K. S., Freitas, A. V. L. (2012). The im-portance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation. 21(3), 811–827. DOI: 10.1007/s10531-011-0222-x

Ruchin, A. B. (2021). Seasonal dynamics and spatial distribution of lepidopterans in selected locations in Mordovia, Russia. Biodiversitas. 22(5), 2569-2575. DOI: 10.13057/biodiv/d220515

Ruchin, A. B., Alekseev, S. K., Khapugin, A. A. (2019). Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). Na-ture Conservation Research. 4(Suppl.1), 11–20. https://dx.doi.org/10.24189/ncr.2019.009

Ruchin, A. B., Egorov, L. V. (2021). Materials for the knowledge of Coleoptera (Insecta: Coleoptera) of the Nizhny Novgorod Region (studies with fermental crown traps). Pro-ceedings of the Mordovia State Nature Reserve. 26, 205–216.

Ruchin, A. B., Egorov, L. V. (2022). Vertical stratification and seasonal dynamics of Coleop-tera in open biotopes of forest ecosystems (Centre of European Russia). Forests. 13, 1014. https://doi.org/10.3390/f13071014

Ruchin, A. B., Egorov, L. V., Khapugin, A. A. (2021a). Seasonal activity of Coleoptera at-tracted by fermental crown traps in forest ecosystems of Central Russia. Ecological Questions. 32(1), 37–53. http://dx.doi.org/10.12775/EQ.2021.004

Ruchin, A. B., Egorov, L. V., Khapugin, A. A. (2021b). Usage of fermental traps for studying the species diversity of Coleoptera. Insects. 12, 407. https://doi.org/10.3390/insects12050407

Ruchin, A. B., Egorov, L. V., Khapugin, A. A., Vikhrev, N. E., Esin, M. N. (2020). The use of simple crown traps for the insects collection. Nature Conservation Research. 5(1), 87–108. https://dx.doi.org/10.24189/ncr.2020.008

Ruchin, A. B., Egorov, L. V., MacGowan, I., Makarkin, V. N., Antropov, A. V., Gornostaev, N. G., Khapugin, A. A., Dvořák, L., Esin, M. N. (2021c). Post-fire insect fauna explored by crown fermental traps in forests of the European Russia. Scientific Reports. 11, 21334. https://doi.org/10.1038/s41598-021-00816-3

Ruchin, A. B., Egorov, L. V., Semishin, G. B. (2018). Fauna of click beetles (Coleoptera: Elateridae) in the interfluve of Rivers Moksha and Sura, Republic of Mordovia, Russia. Biodiversitas. 19, 1352–1365. DOI: 10.13057/biodiv/d190423

Sackmann, P., Farji-Brener, A. (2006). Effect of fire on ground beetles and ant assemblages along an environmental gradient in NW Patagonia: Does habitat type matter? Écosci-ence. 13, 3360-371. DOI: 10.2980/i1195-6860-13-3-360.1

Schowalter, T. D. (2012). Insect responses to major landscape-level disturbance. Annu. Rev. Entomol. 57, 1–20.

Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., et al. (2021). The contribu-tion of insects to global forest deadwood decomposition. Nature. 597(7874), 77–81.

Sieber, A., Kuemmerle, T., Prishchepov, A. V., Wendland, K. J., Baumann, M., Radeloff, V. C., Baskin, L. M., Hostert, P. (2013). Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in Eu-ropean Russia. Remote Sensing of Environment. 133, 38–51. http://dx.doi.org/10.1016/j.rse.2013.01.021

Supartha I. W., Roifiq A., Susila I. W., Damriyasa I. M., Tulung M., Yudha I. K. W., Utama I. W. E. K., Wiradana P. A. (2022). Population structure of Thrips parvispinus Karny (Thysanoptera: Thripidae) and population abundance of predatory insect on red chili (Capsicum annuum L.) treated with imidacloprid insecticide. Nature Environment and Pollution Technology. 21(4), 1665-1671. https://doi.org/10.46488/NEPT.2022.v21i04.019

Teasdale, L. C., Smith, A. L., Thomas, M., Whitehead, C. A., Driscoll, D. A. (2013). Detect-ing invertebrate responses to fire depends on sampling method and taxonomic resolu-tion. Austral Ecology. 38(8), 874-883. https://doi.org/10.1111/aec.12024

Turner, M. G., Baker, W. L., Peterson, C. J., Peet, R. K. (1998). Factors Influencing Succes-sion: Lessons from Large, Infrequent Natural Disturbances. Ecosystems. 1, 511–523.

Ulyshen, M. D., Soon, V., Hanula, J. L. (2011). Vertical distribution and seasonality of preda-tory wasps (Hymenoptera: Vespidae) in a temperate deciduous forest. Florida Ento-mologist. 94(4), 1068–1070. https://doi.org/10.1653/024.094.0450

Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R., Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences. 118(2), e2023989118.

Ward, M., Tulloch, A. I. T., Radford, J. Q., Williams, B. A., Reside, A. E., Macdonald, S. L., Mayfield, H. J., Maron, M., Possingham, H. P., Vine, S. J., O'Connor, J. L., Massing-ham, E. J., Greenville, A. C., Woinarski, J. C. Z., Garnett, S. T., Lintermans, M., Schee-le, B. C., Carwardine, J., Nimmo, D. G., Watson, J. E. M. (2020). Impact of 2019-2020 mega-fires on Australian fauna habitat. Nature Ecology & Evolution. 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1

Wikars, L. O. (2002). Dependence on fire in wood-living insects: an experiment with burned and unburned spruce and birch logs. Journal of Insect Conservation. 6(1), 1–12. https://doi.org/10.1023/A:1015734630309

Wikars, L. O., Schimmel, J. (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecology and Management. 141(3), 189–200.

Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T., Bengtsson, J. (2016). Why are forest fires generally neglected in soil fauna research? A mini-review. Applied Soil Ecology. 98, 261–271. http://dx.doi.org/10.1016/j.apsoil.2015.10.012

Zografou, K., Kati, V., Grill, A., Wilson, R. J., Tzirkalli, E., Pamperis, L. N. et al. (2014). Signals of climate change in butterfly communities in a Mediterranean Protected Area. PLoS ONE. 9(1), e87245. https://doi.org/10.1371/journal.pone.0087245

Downloads

Published

2023-11-28

How to Cite

Ruchin, A. B. (2023). The selected insect families and their seasonal dynamics in the Mordovia State nature reserve in the burned areas of 2021. Journal of Wildlife and Biodiversity, 8(1), 17–38. https://doi.org/10.5281/zenodo.10162131