On the distribution of Coleoptera in forests and open areas (center of the European part of Russia): A study using beer traps

Authors

  • Alexander B. Ruchin Joint Directorate of the Mordovia State Nature Reserve and National Park «Smolny», Russia
  • Leonid V. Egorov Prisursky State Nature Reserve, Russia

DOI:

https://doi.org/10.5281/zenodo.7064115

Keywords:

Beetles, insects’ abundance, Mordovia State Nature Reserve, spatial structure

Abstract

Natural forests (closed habitats) and meadows (open habitats) are essential for the conservation of terrestrial biodiversity. Pubescent biotopes are of considerable importance as well. It is crucial to obtain data on the spatial distribution of Coleoptera in such biotopes because it helps protect natural biotopes. The research was conducted in 2020 on the territory of the Republic of Mordovia (the center of the European part of Russia). Beer traps (with beer bait) were used to collect Coleoptera. The collections were carried out from April to October in various forests and open biotopes. To clarify the spatial distribution of Coleoptera, various forest interiors (meadow, edges, in the depths of the forest) were studied at two experimental sites. A total of 7771 Coleoptera specimens were recorded. In the open biotopes, the smallest numerical abundance of Coleoptera was obtained with relatively high species richness. The lowest species richness was obtained in the depths of the forest at a height of 7.5 m. The edges of forests at a height of 1.5 m differed in the maximum species richness and number. At a height of 7.5 m, the number of Coleoptera was the greatest, but the species diversity was very low. The number of saproxious species was higher in forest biotopes. The number of anthophilic species was higher in the traps installed at the bottom. Differences in the number of species and individuals on different edges (northern, eastern, and western) were also determined. Thus, on the eastern and northern edges, in contrast to the western edge, the numerical abundance at the top was higher than at the bottom.

References

Allemand, R., & Aberlenc, H.-P. (1991). Une méthode efficace d’echantillonage de l’entomofaune des frondaisons: le piège attractif aérien. Bulletin de la Société Ento-mologique Suisse 64: 293–305.

Alonso-Zarazaga, M. A., Barrios, H., Borovec, R., Bouchard, P., Caldara, R., Colonnelli, E., Gültekin, L., Hlaváč, P., Korotyaev, B., & Lyal, C.H.C., et al. (2017). Cooperative Cata-logue of Palaearctic Coleoptera Curculionoidea. Monogr. Electrón. SEA 8, 1–729.

Avtaeva, T. A., Sukhodolskaya, R. A., & Brygadyrenko, V. V. (2021). Modeling the biocli-matic range of Pterostichus melanarius (Coleoptera, Carabidae) in conditions of global climate change. Biosystems Diversity 29(2), 140–150. doi:10.15421/012119

Barnes, A. D., Emberson, R. M., Chapman, H. M., Krell, F. T., & Didham, R. K. (2014). Ma-trix habitat restoration alters dung beetle species responses across tropical forest edges. Biological Conservation 170: 28-37.

Barros, R. C., Fonseca, M. G., Jardim, M. T., Vendramini, V. E., Damiani, B. C. B., Julio, C. E. A. (2020). Species of Cerambycinae (Insecta, Coleoptera, Cerambycidae) from east Paraná State (Brazil), with new geographic records. Zootaxa 4845(1), 001–025. https://doi.org/10.11646/zootaxa.4845.1.1

Basset, Y., Hammond, P. M., Barrios H., Holloway, J. D., & Miller, S. E. (2003). Vertical stratification of arthropod assemblages. In: Basset Y., Novotny V., Miller S.E., Kitching R.L. eds. Arthropods of tropical forests: spatiotemporal dynamics and resource use in the canopy. Cambridge, Cambridge University Press; pp. 17–27.

Bernaschini, M. L., Valladares, G., & Salvo, A. (2020). Edge effects on insect–plant food webs: assessing the influence of geographical orientation and microclimatic conditions. Ecol. Entomol. 45(4), 806-820. https://doi.org/10.1111/een.12854

Bondarenko, A.S., Zamotajlov, A.S., Belyi, A.I., & Khomitskiy, E.E. (2020). Fauna and eco-logical characteristics of ground beetles (Coleoptera, Carabidae) of the Nature Sanctuar-ies «Prichernomorskiy» and «Tuapsinskiy» (Russia). Nature Conservation Research 5(3): 66-85. https://dx.doi.org/10.24189/ncr.2020.032

Bouchard, P., Bousquet, Y., Davies, A.E., Alonso-Zarazaga, M. A., Lawrence, J. F., Lyal, C. H. C., Newton, A. F., Ried, C. A. M., Schmitt, M., & Ślipiński, S. A., et al. (2011). Family-group names in Coleoptera (Insecta). ZooKeys 88, 1–972. doi:10.3897/zookeys.88.807.

Bouchard, P., Bousquet, Y. (2020). Additions and corrections to “Family-group names in Col-eoptera (Insecta)”. ZooKeys 922: 65–139, doi:10.3897/zookeys.922.46367.

Bousquet, Y. (2016). Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1–776. doi:10.3897/zookeys.583.7084.

Bragança, M. A. L., Zanuncio, J. C., Picanço, M., & Laranjeiro, A. J. (1998). Effects of envi-ronmental heterogeneity on Lepidoptera and Hymenoptera populations in Eucalyptus plantations in Brazil. Forest Ecology and Management. 103: 287-292.

Cadenasso, M.L., Traynor, M.M., & Pickett, S.T.A. (1997) Functional location of forest edg-es: gradients of multiple physical factors. Canadian Journal of Forest Research, 27: 774-782.

Cadenasso, M.L., Pickett, S.T.A., Weathers, K.C., & Jones, C.G. (2003). A framework for a theory of ecological boundaries. BioScience, 53, 750-758.

Cárdenas, A.M., Gallardo, P., Salido, Á., & Márquez, J. (2020). Effects of environmental traits and landscape management on the biodiversity of saproxylic beetles in Mediterra-nean oak forests. Diversity 12: 451. https://doi.org/10.3390/d12120451

Carpaneto, G.M., Baviera, C., Biscaccianti, A.B., Brandmayr, P., Mazzei, A., Mason, F., Bat-tistoni, A., Teofili, C., Rondinini, C., & Fattorini, S., et al. (2015). A red list of Italian saproxylic beetles: Taxonomic overview, ecological features and conservation issues (Coleoptera). Fragm. Entomol. 47: 53–126.

Cauwer, B., Reheul, D., Laethauwer, S., Nijs, I., & Milbau, A. (2006). Effect of light and bo-tanical species richness on insect diversity. Agronomy for Sustainable Development, 26 (1): 35-43. DOI: 10.1051/agro:2005058

Charles, E., & Basset, Y. (2005). Vertical stratification of leaf-beetle assemblages (Coleop-tera: Chrysomelidae) in two forest types in Panama. Journal of Tropical Ecology 21: 329–336.

Chen, J., Franklin, J. F., & Spies, T. A. (1995). Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications 5(1): 74–86.

Danilevsky, M. (Ed.) (2020). Catalogue of Palaearctic Coleoptera. Vol. 6/1. Updated and Re-vised Second Edition. Chrysomeloidea I (Vesperidae, Disteniidae, Cerambycidae); Brill: Leiden, The Netherlands; Boston, MA, USA, 712 p.

DeVries, P.J., Walla, T.R., & Greeney, H.F. (1999). Species diversity in spatial and temporal dimensions of fruit-feeding butterflies from two Ecuadorian rainforests. Biological Journal Linnean Society. 68: 333–353.

De Smedt, P, Baeten, L, Proesmans, W., Poel, S.V., Van Keer, J., Giffard, B., Martin, L., Vanhulle, R., Brunet, J., Cousins, S.A.O., Decocq, G., Deconchat, M., Diekmann, M., Gallet-Moron, E., Le Roux, V., Liira, J., Valdés, A., Wulf, M., Andrieu, E., Hermy, M., Bonte, D., & Verheyen, K. (2019). Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Diver-sity and Distributions 25(6): 963–974.

Didham, R.K., & Ewers, R.M. (2014). Edge effects disrupt vertical stratification of microcli-mate in a temperate forest canopy. Pacific Science 68(4): 493-508. https://doi.org/10.2984/68.4.4

Egorov, L.V., Ruchin, A.B., Semenov, V.B., Semionenkov, O.I., & Semishin, G.B. (2020). Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys 962: 13–122. https://doi.org/10.3897/zookeys.962.54477.

Evangelista, J., Rocha, M.V.C., Monné, M.L., Monné, M.A., & Frizzas, M.R. (2021). Diversi-ty of Cerambycidae (Insecta: Coleoptera) in the Cerrado of Central Brazil using a new type of bait. Biota Neotrop. 21(1): e20201103. https://doi.org/10.1590/1676-0611-BN-2020-1103

Ewers, R.M., & Didham, R.K. (2006). Continuous response functions for quantifying the strength of edge effects. Journal Applied Ecology. 43(3): 527-536. https://doi.org/10.1111/j.1365-2664.2006.01151.x

Gerónimo-Torres, J.C., Oporto-Peregrino, S., Magaña-Alejandro, M.A., Ríos-Rodas, L., Sánchez-Díaz, B., Monroy-Hernández, R., & Pozo-Santiago, C.O. (2021). Vertical dis-tribution of bark beetles and borers in a tropical forest. Tropical and Subtropical Agroe-cosystems 24: 74.

Graham, E.E., Poland, T.M., McCullough, D.G., & Millar, J.G. (2012). A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). J. Econ. Entomol. 105: 837–846.

Guarnieri, F.G. 2009. A survey of longhorned beetles (Coleoptera: Cerambycidae) from Paw Paw, Morgan County, West Virginia. Maryland Entomologist. 5: 11–22.

Gutowski, J.M., Sućko, K., Borowski, J., Kubisz, D., Mazur, M.A., Melke, A., Mokrzycki, T., Plewa, R., & Żmihorski, M. (2020). Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 461: 117893, https://doi.org/10.1016/j.foreco.2020.117893.

Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48: 1–23. doi: 10.1146/annurev-ecolsys-110316-022612

Fischer, J., & Lindenmayer, D.B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16(3): 265-280. https://doi.org/10.1111/j.1466-8238.2007.00287.x

Franklin, C.M.A., Harper, K.A., & Clarke, M.J. (2021). Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Canadian Journal of Forest Research. 51(2): 274-282. https://doi.org/10.1139/cjfr-2020-0308

Habel, J.C., Koc, E., Gerstmeier, R., Gruppe A., Seibold S., & Ulrich W. (2021). Insect diver-sity across an afro-tropical forest biodiversity hotspot. J. Insect. Conserv. 25: 221–228. https://doi.org/10.1007/s10841-021-00293-z

Hanski, I. (2015). Habitat fragmentation and species richness. Journal Biogeography 42(5): 989-993. https://doi.org/10.1111/jbi.12478

Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskir-chen E.S., Roberts D., Jaiteh M.S., & Esseen, P.A. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768-782.

Iwan, D., & Löbl, I. (Eds.) (2020). Catalogue of Palaearctic Coleoptera. Vol. 5. Revised and Updated Second Edition. Tenebrionoidea; Brill: Leiden, The Netherlands; Boston, MA, USA, 945 p.

Janssen, P., Fortin, D., & Hébert, C. (2009). Beetle diversity in a matrix of old-growth boreal forest: influence of habitat heterogeneity at multiple scales. Ecography 32(3): 423-432. https://doi.org/10.1111/j.1600-0587.2008.05671.x

Jung, J.K., & Lee, J.H. (2016). Forest–farm edge effects on communities of ground beetles (Coleoptera: Carabidae) under different landscape structures. Ecological Research 31: 799–810. https://doi.org/10.1007/s11284-016-1388-1

Kabak, I.I., & Liang, H.-B. (2021). An annotated list of the genus Chlaenius Bonelli, 1810 (Coleoptera: Carabidae) of Xinjiang Uygur Autonomous Region of China. Far Eastern Entomologist 429: 12-28. https://doi.org/10.25221/fee.429.3

Komonen, A., Övermark, E., Hytönen, J., & Halme, P. (2015). Tree species influences diversi-ty of ground-dwelling insects in afforested fields. Forest Ecology and Management 349: 12-19. https://doi.org/10.1016/j.foreco.2015.04.014

Kriegel, P., Fritze, M.-A., & Thorn, S. (2021). Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short-rotation coppices. Agric. For. Entomol. 23(4): 400-410.

Kuchenbecker, J., Macedo-Reis, L.E., Fagundes, M., & Neves, F.S. (2021) Spatiotemporal distribution of herbivorous insects along always-green mountaintop forest islands. Fron-tiers in Forests and Global Change 4: 709403. doi: 10.3389/ffgc.2021.709403

Kunakh, O. M., Yorkina, N. V., Zhukov, O. V., Turovtseva, N. M., Bredikhina, Y. L., & Log-vina-Byk, T. A. (2020). Recreation and terrain effect on the spatial variation of the ap-parent soil lectrical conductivity in an urban park. Biosystems Diversity 28(1): 3–8. doi:10.15421/012001

Kuussaari, M., Heliölä, J., Luoto, M., & Pöyry, J. (2007). Determinants of local species rich-ness of diurnal Lepidoptera in boreal agricultural landscapes. Agriculture, Ecosystems & Environment. 122: 366-376.

Lachat, T., Wermelinger, B., Gossner, M.M., Bussler, H., Isacsson, G., & Müller, J. (2012). Saproxylic beetles as indicator species for dead-wood amount and temperature in Euro-pean beech forests. Ecol. Indic. 23: 323–331, https://doi.org/10.1016/j.ecolind.2012.04.013.

Lacasella, F., Gratton, C., De Felici, S., Isaia, M., Zapparoli, M., Marta, S., & Sbordoni, V. (2015). Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest-grassland ecotone. Biodiversity and Conservation 24: 447–465.

Löbl, I., & Löbl, D. (Eds.) (2015). Catalogue of Palaearctic Coleoptera. Vol. 2/1. Revised and Updated Version. Hydrophiloidea–Staphylinoidea; Brill: Leiden, The Netherlands; Bos-ton, MA, USA, 1702 p.

Löbl, I., & Löbl, D. (Eds.) (2016). Catalogue of Palaearctic Coleoptera. Vol. 3. Revised and Updated Version. Scarabaeoidea–Scirtoidea–Dascilloidea–Buprestoidea–Byrrhoidea; Brill: Leiden, The Netherlands; Boston, MA, USA, 983 p.

Löbl, I., & Löbl, D. (Eds.) (2017). Catalogue of Palaearctic Coleoptera. Vol. 1. Revised and Updated Version. Archostemata–Adephaga–Myxophaga; Brill: Leiden, The Nether-lands; Boston, MA, USA, 1443 p.

Löbl, I., & Smetana, A. (Eds.) (2011). Catalogue of Palaearctic Coleoptera. Vol. 7: Curcu-lionoidea I; Apollo Books: Stenstrup, Denmark, 373 p.

Löbl, I., & Smetana, A. (Eds.) (2013). Catalogue of Palaearctic Coleoptera. Vol. 8: Curcu-lionoidea II; Apollo Books: Stenstrup, Denmark, 707 p.

Löbl, I., & Smetana, A. (Eds.) (2007). Catalogue of Palaearctic Coleoptera. Vol. 4. Elateroi-dea–Derodontoidea–Bostrichoidea–Lymexyloidea–Cleroidea–Cucujoidea; Apollo Books: Stenstrup, Denmark, 935 p.

Löbl, I., & Smetana, A. (Eds.) (2010). Catalogue of Palaearctic Coleoptera. Vol. 6: Chrysomeloidae; Apollo Books: Stenstrup, Denmark, 924 p.

Latha, T., & Thomas, S.K. (2020). Edge effect on roller dung beetles (Coleoptera: Scarabae-idae: Scarabaeinae) in the moist South Western Ghats. J. Entomol. 8: 1044–1047.

MacRae, T.C. (2000). Review of the genus Purpuricenus Dejean (Coleoptera: Cerambycidae) in North America. Pan-Pacific Entomologist. 76: 137–169.

MacRae, T.C., & Rice M.E. (2007). Distributional and biological observations on North American Cerambycidae (Coleoptera). Coleopterists Bulletin 61(2): 227–263.

Magurran, A.E. (1996). Ecological Diversity and Its Measurement; Chapman & Hall: London, UK, 179 p.

Magura, T. (2002). Carabids and forest edge: Spatial pattern and edge effect. Forest Ecology and Management 157: 23–37.

Magura, T., & Lövei, G.L. (2020). The permeability of natural versus anthropogenic forest edges modulates the abundance of ground beetles of different dispersal power and habi-tat affinity. Diversity 12: 320. https://doi.org/10.3390/d12090320

Major, R.E., Christie, F.J., Gowing, G., Cassis, G., & Reid, C.A. (2003). The effect of habitat configuration on arboreal insects in fragmented woodlands of south-eastern Australia. Biological Conservation. 113: 35–48.

Marrec, R., Le Roux V., Martin L., Lenoir J., Brunet J., Cousins S. A. O., De Smedt P., De-conchat M., Diekmann M., Ehrmann S., Gallet-Moron E., Giffard B., Liira J., Lindgren J., Valdes A., Verheyen K., Wulf M., & Decocq G. (2021). Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Global Ecol-ogy and Biogeography 30: 165–182.

Martínez-Falcón, A.P., Zurita, G.A., Ortega-Martínez, I.J., & Moreno, C.E. (2018). Popula-tions and assemblages living on the edge: dung beetles responses to forests-pasture eco-tones. PeerJ 6: e6148 https://doi.org/10.7717/peerj.6148

Máthé, I. (2006). Forest edge and carabid diversity in a Carpathian beech forest. Community Ecology 7: 91–97. https://doi.org/10.1556/ComEc.7.2006.1.9

Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the eastern United States. Biological Conservation, 66(3), 185–194.

Melo, D.H.A., Duarte, M., Mielke, O.H.H., Robbins, R.K., & Freitas, A.V.L. (2019). Butter-flies (Lepidoptera: Papilionoidea) of an urban park in northeastern Brazil. Biota Neo-tropica. 19(1), e20180614.

Miller, D.R., Crowe, C.M., & Sweeney, J.D. (2020). Trap height affects catches of bark and woodbor-ing beetles (Coleoptera: Curculionidae, Cerambycidae) in baited multiple-funnel traps in Southeast-ern United States. Journal of Economic Entomology, 113(1): 273–280. https://doi.org/10.1093/jee/toz271

Normann, C., Tscharntke, T., & Scherber, C. (2016). Interacting effects of forest stratum, edge and tree diversity on beetles. Forest Ecology and Management 361: 421-431. https://doi.org/10.1016/j.foreco.2015.11.002

Palyi, A. P., Makshei, A. N., Kasianenko, O. I., Petrov, R. V., Faly, L. I., & Palyi, A. P. (2020). Distribution, bioecological peculiarities of staphylinids (Coleoptera, Staphylinidae) in livestock biocenoses of forest-steppe and steppe Ukraine. Biosystems Diversity 28(1): 24–28. doi:10.15421/012004

Peyras, M., Vespa, N.I., Bellocq, M.I., & Zurita, G.A. (2013). Quantifying edge effects: The role of habitat contrast and species specialization. J. Insect Conserv. 17: 807–820.

Polevoi, A.V. (2021). Fungus gnats (Diptera: Bolitophilidae, Diadocidiidae, Keroplatidae, Mycetophilidae) in the Kostomuksha State Nature Reserve, Russia. Nature Conservation Research 6(Suppl.1): 5–16. https://dx.doi.org/10.24189/ncr.2021.001

Popkova, T.V., Zryanin, V.A., & Ruchin, A.B. (2021). The ant fauna (Hymenoptera: Formici-dae) of the Mordovia State Nature Reserve, Russia. Nature Conservation Research 6(3): 45–57. https://dx.doi.org/10.24189/ncr.2021.037

Puker, A., Correa, C.M.A., Silva, A.S., Silva, J.V.O., Korasaki, V., & Grossi, P.C. (2020). Ef-fects of fruit‐baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entomological Science 23(3): 245-255.

Redolfi De Zan, L., Bardiani, M., Antonini, G., Campanaro, A., Chiari, S., Mancini, E., Maura, M., Sabatelli, S., Solano, E., Zauli, A., Sabbatini, P.G., & Roversi, P.F. (2017). Guide-lines for the monitoring of Cerambyx cerdo. Nature Conservation. 20: 129–164. https://doi.org/10.3897/natureconservation.20.12703.

Ries, L., Fletcher, R. J., Battin, J., & Sisk, T. D. (2004). Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annual Review of Ecology, Evolution and Systematics 35: 491–522.

Robertson, J., Ślipiński, A., Moulton, M., Shockley, F.W., Giorgi, A., Lord, N.P., McKenna, D.D., Tomaszewska, W., Forrester, J., & Miller, K.B., et al. (2015). Phylogeny and clas-sification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Col-eoptera: Cucujiformia). Syst. Entomol. 40: 745–778, doi:10.1111/syen.12138.

Romano, V.A., Rosati, L., & Fascetti, S. (2020). Trends in population size of Ophrys argolica subsp. biscutella in the Appennino Lucano-Val d'Agri-Lagonegrese National Park (Ita-ly). Nature Conservation Research 5(Suppl.1): 155–164. https://dx.doi.org/10.24189/ncr.2020.058

Ruchin, A.B. (2021). Seasonal dynamics and spatial distribution of lepidopterans in selected locations in Mordovia, Russia. Biodiversitas. 22(5): 2569-2575. DOI: 10.13057/biodiv/d220515

Ruchin, A.B., Alekseev, S.K., & Khapugin, A.A. (2019). Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). Na-ture Conservation Research 4(Suppl.1): 11–20. https://dx.doi.org/10.24189/ncr.2019.009

Ruchin, A.B., & Egorov, L.V. (2017). Overview of insect species included in the Red Data Book of Russian Federation in the Mordovia State Nature Reserve. Nature Conservation Research 2(Suppl. 1): 2–9. doi: 10.24189/ncr.2017.016

Ruchin, A.B., & Egorov, L.V. (2021a). On the use of wine vinegar as an attractant in crown traps. Proceedings of the Mordovia State Nature Reserve. 29: 3-12.

Ruchin, AB, Egorov, LV. (2021b). Vertical stratification of beetles in deciduous forest com-munities in the Centre of European Russia. Diversity. 13: 508. https://doi.org/10.3390/d13110508

Ruchin, A.B., Egorov, L.V., & Khapugin, A.A. (2021a). Seasonal activity of Coleoptera at-tracted by fermental crown traps in forest ecosystems of Central Russia. Ecological Questions. 32(1): 37-53. http://dx.doi.org/10.12775/EQ.2021.004

Ruchin, A.B., Egorov, L.V., & Khapugin, A.A. (2021b). Usage of fermental traps for studying the species diversity of Coleoptera. Insects 12: 407. https://doi.org/10.3390/insects12050407

Ruchin, A.B., Egorov, L.V., Khapugin, A.A., Vikhrev, N.E., & Esin, M.N. (2020). The use of simple crown traps for the insects collection. Nature Conservation Research. 5(1): 87–108. https://dx.doi.org/10.24189/ncr.2020.008

Ruchin, A.B., Egorov, L.V., MacGowan, I., Makarkin, V.N., Antropov, A.V., Gornostaev, N.G., Khapugin, A.A., Dvořák, L., & Esin, M.N. (2021c). Post-fire insect fauna explored by crown fermental traps in forests of the European Russia. Scientific Reports. 11: 21334. https://doi.org/10.1038/s41598-021-00816-3

Ruchin, A.B., Egorov, L.V., & Polumordvinov, O.A. (2021d). Coleoptera of the Penza region, Russia based on fermental crown trap). Biodiversitas 22(4): 1946-1960. https://doi.org/10.13057/biodiv/d220443

Ruchin, A.B., Egorov, L.V., Sazhnev, A.S., Polumordvinov, O.A., & Ishin, R.N. (2019). Pre-sent distribution of Protaetia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. Biharean Biologist 13 (1): 12-16.

Ruchin, A.B., & Khapugin, A.A. (2019). Red Data Book Invertebrates in a Protected Area of European Russia. Acta Zoologica Academiae Scientiarum Hungaricae 65(4): 349–370. DOI: 10.17109/AZH.65.4.349.2019

Sergeev, M.E. (2020). Species composition and biotopic distribution of leaf beetles (Coleop-tera: Megalopodidae, Chrysomelidae) in the Sikhote-Alin State Nature Reserve (Rus-sia). Nature Conservation Research 5(2): 80–88. https://dx.doi.org/10.24189/ncr.2020.020

Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–423.

Spector, N., & Ayzama, S. (2003). Rapid turnover and edge effects in dung beetle assemblag-es (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35(3): 394-404.

Stone, M.J., Catterall, C.P., & Stork, N.E. (2018). Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest. PLoS ONE 13(3): e0193369. https://doi.org/10.1371/journal.pone.0193369

Stork, N.E., & Grimbacher, P.S. (2006). Beetle assemblages from an Australian tropical rain-forest show that the canopy and the ground strata contribute equally to biodiversity. Proceedings of the Royal Society B: Biological Sciences. 273: 1969–1975.

Stork, N.E., Stone, M., & Sam, L. (2016). Vertical stratification of beetles in tropical rainfor-ests as sampled by light traps in North Queensland, Australia. Austral Ecology. 41: 168–78.

Swart, R.C., Pryke, J.S. & Roets, F. (2018). Arthropod assemblages deep in natural forests show different responses to surrounding land use. Biodivers Conserv 27: 583–606. https://doi.org/10.1007/s10531-017-1451-4

Touroult, J., & Dalens, P.H. (2012). Beetles vertical stratification in French Guiana’ forests: study using aerial fruit traps. ACOREP‐France: Coléoptères de Guyane. VI: 16-24.

Verdú, J.R., Numa, C., & Hernández-Cuba, O. (2011). The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna – Forest ecosystem. Ecolog-ical Indicators, 11(3): 831-839. https://doi.org/10.1016/j.ecolind.2010.10.011.

Weiss, M., Didham, R.K., Procházka, J., Schlaghamerský, J., Basset, Y., Odegaard, F., Tichechkin A., Schmidl, J., Floren, A., Curletti, G., Aberlenc, H.-P., Bail, J., Barrios, H., Leponce, M., Medianero, E., Fagan, L.L., Corbara, B., & Cizek, L. (2019). Saproxylic beetles in tropical and temperate forests – a standardized comparison of vertical stratifi-cation patterns. Forest Ecology and Management 444: 50-58. https://doi.org/10.1016/j.foreco.2019.04.021.

Wong, J.C.H., & Hanks, L.M. (2016). Influence of fermenting bait and vertical position of traps on attraction of cerambycid beetles to pheromone lures. Journal of Economic En-tomology 109(5): 2145–2150. https://doi.org/10.1093/jee/tow197

Yekwayo, I., Pryke, J.S., Roets, F., & Samways, M.J. (2016). Surrounding vegetation matters for arthropods of small, natural patches of indigenous forest. Insect Conservation and Diversity 9(3): 224-235. https://doi.org/10.1111/icad.12160

Yekwayo, I., Pryke, J.S., Roets, F., & Samways M.J. (2017). Responses of ground living ar-thropods to landscape contrast and context in a forest-grassland mosaic. Biodiversity and Conservation 26: 631–651. https://doi.org/10.1007/s10531-016-1262-z

Downloads

Additional Files

Published

2022-09-09

How to Cite

Ruchin, A. B., & Egorov, L. V. . (2022). On the distribution of Coleoptera in forests and open areas (center of the European part of Russia): A study using beer traps. Journal of Wildlife and Biodiversity, 8(1), 171–191. https://doi.org/10.5281/zenodo.7064115