Potential geographic distribution and habitat suitability of the Greater horseshoe bat, Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran

Authors

  • Saeed Shahabi Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
  • Mozafar Sharifi Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
  • Vahid Akmali Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

DOI:

https://doi.org/10.22120/jwb.2019.35013

Keywords:

Chiroptera, habitat suitability, MaxEent, new records, Rhinolophus ferrumequinum

Abstract

We present a review of earlier records of the greater horseshoe bat distribution in Iran together with new distribution records of this bat obtained during recent years (2012–2016). The present study describes 41 new localities that increase the species known range mainly over Zagros and Elburz ranges at elevations between 27 - 2560 m above sea level. Moreover, based on these data potential geographic distribution of the greater horseshoe bat has been estimated using the Maximum Entropy modeling (MaxEnt). The MaxEnt model showed that the environmental variables including bio-12 (average annual precipitation), bio-6 (minimum temperature of the coldest month), and bio-19 (precipitation of the coldest quarter of the year) were the most important predictors of Rhinolophus ferrumequinum distribution. AUC values indicated an excellent power of MaxEent to create potential habitat map (AUC=0.845). The MaxEnt model predicted climate suitability to be high in Zagros and Elburz Mountains especially in northwest of Iran, low in some parts of south, east and southeast of Iran. Suitable habitat was absent in the two vast deserts (Dasht-e lut and Dasht-e Kavir) in the Iranian Plateau basin where there had not been any report of R. ferrumequinum.

References

Andersen K. 1905. On some bats of the genus Rhinolophus, with remarks on their mutual affinities, and descriptions of twenty-six new forms. Proceedings of the Zoological Society of London 2: 75-145.

Anderson R.P., Lew D., Peterson E.A.T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modeling 162: 211–232,

Austin M.P., Meyers J.A. 1996. Current approaches to Modeling the environmental niche of eucalypts: implications for management of forest biodiversity. Forest Ecology and Management 85: 95–106.

Bauer J.T., Peterson A.T. 2005. Visualizing environmental correlates of species geographical range limits. Diversity and Distribution 11: 275–278.

Benda P., Faizolahi K., Andreas M., Obuch J., Reiter A., Ševčík M., Uhrin M., Vallo P., Ashrafi S. 2012. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Societatis Zoologicae Bohemicae 76: 163-582.

Blondel J., Aronson J., Bodiou J.Y., Boeu F.G. 2010. The Mediterranean Region. Biological Diversity in Space and Time. Second Edtion. Oxford: Oxford University Press, xv+376 pp.

Bobrinskii N.A., Kuznetzov B.A., Kuzyakin A.P. 1965.Opredelitel Mlekopitaiushchikh SSSR [Keyto the mammals of the USSR], 2nd ed. Moscow 382 pp.

Cheesman R.E. 1921. Report on collection of mammals made by col. J.E.B. Hotson in Shiraz. Journal of the Bombay Natural History Society 27: 575 pp.

Crandall K.A., Bininda-Edmonds O.R.P., Mace G.M., Wayne R.K. 2000. Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15: 290–295.

Csorba G., Ujhelyi P., Thomas N. 2003. Horseshoe Bats of the World(Chiroptera: Rhinolophidae). Alana books, Shropshire. pp.160.

DeBlase A.F. 1980. The bats of Iran: systematics, distribution, ecology. Fieldiana: Zoology 4: 1–424.

Diekotter T., Walther-Hellwig K., Conradi M., Suter M., Frankl R. 2006. Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodiversity and Conservation 15: 57–68.

Dietz C., Von H. O., Nill D. 2009. Bats of Britain, Europe, and Northwest Africa. A & C Black, London.

ESRI. 2006. ArcGIS 9.3. Environmental Systems Research Institute, Redlands, CA, USA.

Etemad E. 1967. Notes on bats from Iran. Mammalia 31: 275–280.

Etemad E. 1984. Pestândâran-e iran, hashareh-hhârân va khoffashhaâ [The Mammals of Iran, Vol. 3. Chiroptera and Insectivora]. Tehran: Department of Environment, xii+294 pp (in Farsi, with a summary in English)

Farhang-azad A. 1969. Bats from North Khorasan, Iran. Mammalia33: 730–732.

Franklin J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, UK.

Gaisler J. 1970. The bats (Chiroptera) collected in Afghanistan by the Czechoslovak Expeditions of 1965-1967. Acta Societatis Zoologicae Bohemicae 4, 6 : 1-56.

Geoffroy Saint- Hilaire E. 1803. Catalogue des Mammiféres du Museum National d'Histoire Naturelle. Paris.

Gmelin S.G. 1774. Reise durch Rußland zur Untersuchung der drey Natur-Reiche. Dritter Theil. Reise durch das nordliche Persien, in den Jahren 1770, 1771, bis im April 1772. St. Petersburg: Kayserl. Academie der Wissenschaften, 580 pp + liii tabs.

Graham C.H., Ron S.R., Santos J.C., Schneider C.J., Moritz C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58: 1781–1793.

Hosmer D.W., Lemeshow S. 2000. Applied Logistic Regresssion. Wiley, New York.

Hutson A.M., Mickleburgh S.P., Racey P.A. 2001. Microchiropteran bats: global status survey and conservation action plan (Vol. 56). IUCN.

Karami M., Hutterer R., Benda P., Siahsarvie R., kryštufek B. 2008. Annotated checklist of the mammals of Iran. Lynx39: 63–102.

Koch C. 1863. Das wesentliche der Chiropteren mitbesonderer Beschreibung der in dem Herzogthum Nassau and angränzenden Landestheilen vorkommenden Fledermäuse. Jb. Ver. Naturk. Nassau18: 261-588.

Kumar S., Spaulding S A., Stohlgren TJ., Hermann K.A., Schmidt T.S., Bahls L.L. 2009. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and Environment7: 415–420.

Lay D.M. 1967. A study of the mammals of Iran resulting from the Street Expedition of 1962–63. Fieldiana: Zoology54: 1–282.

Liu C., Berry P.M., Dawson T.P., Pearson R.G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography28: 385–393.

Luoto M., Heikkinen R.K., Saarinen K. 2006. Determinants of biogeographical distribution of butterflies in boreal regions. Journal of Biogeography doi:10.1111/j.1365-2699.2005.01395.x.

Mehdizadeh R., Akmali V., Sharifi M. 2018. Mitochondrial DNA marker (D-loop) reveals high genetic diversity but low population structure in the pale bent-wing bat (Miniopterus pallidus) in Iran. Mitochondrial DNA Part A. https://doi.org/10.1080/24701394.2018.1538365

Missone X. 1959. Analyse zoogéographique des mammifères de l’Iran. Institut Royal des Sciences Natureles de Belgique, Mémoires, Deuxième Série 59: 1–157.

Murienne J., Guilbert E., Grandcolas P. 2009. Species' diversity in the New Caledonianendemic genera Cephalidiosus and Nobarnus Insecta: Heteroptera: Tingidae, an approach using phylogeny and species' distribution Modeling. Botanical Journal of the Linnean Society 97: 177-184.

Najafi N., Akmali V., Sharifi M. 2018. Historical explanation of genetic variation in the Mediterranean horseshoe bat Rhinolophus Euryale (Chiroptera: Rhinolophidae) inferred from mitochondrial cytochrome-b and D-loop genes in Iran. Mitochondrial DNA Part A. https://doi.org/10.1080/24701394.2018.1463375

Ortega-Huerta M.A., Peterson A.T. 2008. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista mexicana de Biodiversidad 79(1): 205-216.

Pavlinić I., Daković M. 2010. The greater horseshoe bat, R. ferrumequinum in Croatia: present status and research recommendations. Natura Croatica 19(2): 339-356.

Phillips S.J., Anderson R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling190: 231–259.

Raxworthy C.J., Ingram. C., Rabibisoa N., Pearson R. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day Geckos (Phelsuma) from Madagascar. Systematic Biology56: 907–923.

Rissler L.J., Apodaca J.J. 2007. Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology56: 924–942.

Rosen T. 2007. The Endangered Species Act and the distinct population segment policy. Ursus18: 109-116.Rossiter S.J., Jones G.,

Ransome R.D., Barratt E.M. 2000. Genetic variation and population structure in the endangered greater horseshoe bat R. ferrumequinum. Molecular Ecology 9(8): 1131-1135.

Schreber J.C.D. 1774. Die Säugethiere in Abbildungen nach der Natur. Erlangen.

Scott J. M., P. J. Heglund M.L., Morrison. 2002. Predicting species occurrences: issues of accuracy and scale. Island, Washington, D.C.

Shahabi S., Akmali V., Sharifi M. 2017a. Taxonomic evaluation of the greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran inferred from the Mitochondrial D-loop Gene. Zoological Science 34: 1–7.

Shahabi S., Akmali V., Sharifi M. 2017b. Distribution and new records of cave dwelling bats from Fars province in south west of Iran. Species 18(59), 91-116.

Shahabi S., Sharifi M., Akmali V. 2019. Echolocation call frequency and mitochondrial control region variation in the closely related bat species of the genus Rhinolophus (Chiroptera: Rhinolophidae) occurring in Iran: implications for taxonomy and intraspecific phylogeny. Mammal Research, https://doi.org/10.1007/s 13364-019-00417-6.

Sharifi M., Hemmati Z., Rahimi P. 2000. Distribution and conservation status of bats in Iran. Myotis 38: 61–68.

Sobek-Swant S., Kluza D.A., Cuddington K., Lyons B.D. 2012. Potential distribution of emerald ash borer: What can we learn from ecological niche models using MaxEent and GARP? Forest Ecology and Management281: 23–31

Thuiller W., Richardson D.M., Pysˇek P., Midgley G.F., Hughes G.O., et al. 2005.

Niche-based Modeling as a tool for predicting the risk of alien plant invasions

at a global scale. Global Change Biology 11: 2234–2250.

Wang Y., Xie B., Wan, F. Xiao Q. 2007. Application of ROC curve analysis inevaluating the performance of alien species’ potential distribution models. Biodiversity Science. 15. 10.1360/biodiv.060280.

Downloads

Published

2019-03-30

How to Cite

Shahabi, S., Sharifi, M., & Akmali, V. (2019). Potential geographic distribution and habitat suitability of the Greater horseshoe bat, Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran. Journal of Wildlife and Biodiversity, 3(2), 40–51. https://doi.org/10.22120/jwb.2019.35013