Castilleja lapponica Gand. (Orobanchaceae) coenopopulation status assessment in the Lovozero Massif (Murmansk Region)

Authors

DOI:

https://doi.org/10.5281/zenodo.17386451

Keywords:

Coenopopulation, population age structure, Red Data Book, Castilleja lapponica Gand.

Abstract

This article presents the results of Castilleja lapponica Gand. populations status monitoring in the Lovozero mountain range. This species is recognised as protected in the region but is poorly studied due to its fragmented distribution, small population size, and limited natural habitat, which makes it difficult to conduct representative studies of population dynamics and ecological prerequisites for survival. The study provided data on the ontogenetic structure and effective population size of six Castilleja lapponica coenopopulations growing in different types of biotopes, including anthropogenically transformed ones, as well as recovery, effectiveness, and vitality indices. It has been established that all studied coenopopulations are characterised by an incomplete ontogenetic spectrum and an extremely low recovery index, which indicates an inability to self-sustain under current conditions. Despite the high density of specimens in habitats disturbed by human activity, a general trend towards a decline in abundance has been observed, compared to previously recorded data. The results obtained confirm the risks to Castilleja lapponica populations and indicate the need to develop targeted conservation strategies whilst considering its apophyte-specific renewal strategy.

References

Arctic Council and the International Arctic Science Committee (IASC) (2005). Arctic climate impact assessment. Cambridge University Press, Cambridge.

Belkina, O. A., Konstantinova, N. A., & Kostina, V. A. (1991). Flora vysshikh rasteniy Lovozerskikh gor [Flora of higher plants of the Lovozersky Mountains]. St. Petersburg.

Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F. J. W., ... & Olsen, M. S. (2019). Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 14 (4), 045010. https://doi.org/10.1088/1748-9326/aafc1b

Brochmann, C., Edwards, M. E., & Alsos, I. G. (2013). The dynamic past and future of arctic vascular plants: Climate change, spatial variation and genetic diversity. In The balance of nature and human impact (pp. 133–152). Cambridge University Press. https://doi.org/10.1017/CBO9781139095075.015

Bubenets, V. N., Pokhilko, A. A., & Tsareva, V. T. (1993). Biologicheskaya flora Murmanskoy oblasti [Biological flora of Murmansk Oblast]. Apatity: Kola Science Centre, Russian Academy of Sciences.

Bulygina O.N., Razuvayev V.N., Trofimenko L.T., Shvets N.V.: Description of the air temperature data array at stations in Russia. Certificate of database state registration № 2014621485. http://meteo.ru/data/156-temperature#описание-массива-данных

Crawford, R. M., Chapman, H. M., Abbott, R. J., & Balfour, J. (1993). Potential impact of climatic warming on Arctic vegetation. Flora, 188 (5–6), 367–381. https://doi.org/10.1007/978-3-642-78966-3_11

Demakhina, T. V. (2014). Castilleja lapponica Gand. In N. A. Konstantinova, A. S. Koryakin, O. A. Makarova, & V. V. Bianki (Eds.), Red Data Book of the Murmansk Region (pp. 460–461). Asia-print Publishing.

Henry, G. H. R., & Molau, U. (1997). Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology, 3 (S1), 1–9. https://doi.org/10.1111/j.1365-2486.1997.gcb132.x

Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds). Cambridge University Press, Cambridge.

Ishbirdin, A. R., & Ishmuratova, M. M. (2004). Adaptive morphogenesis and ecological and cenotic survival strategies of herbaceous plants. In Methods of population biology: Proceedings of the VII All-Russian Population Biology Seminar (Vol. 2, pp. 113–120). Syktyvkar.

Menshakova, M. Y., & Gainanova, R. I. (2024). Rasprostranenie redkikh vidov rasteniy na territorii ZATO g. Ostrovnoy (Murmanskaya oblast') [Distribution of rare plant species in the territory of the closed administrative-territorial formation of Ostrovnoy (Murmansk Oblast)]. Estestvennye i Tekhnicheskie Nauki, (1) , 134–140. https://doi.org/10.25633/ETN.2024.01.22

Osmanova, G. O., & Zhivotovsky, L. A. (2020). Ontogenetic spectrum as an indicator of the state of coenopopulations of plants. Izvestiya Rossiiskoi Akademii Nauk. Seriya Biologicheskaya , (2) , 144–152.

Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S., Damoulas, T., Knight, S. J., & Goetz, S. J. (2013). Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3 (7), 673–677. https://doi.org/10.1038/nclimate1858

Red Data Book of Chelyabinsk Oblast: Animals, plants, fungi (2nd ed.) (A. V. Lagunov, Ed.). (2017). Moscow: ReArt.

Red Data Book of Perm Krai / Ministry of Natural Resources, Forestry and Ecology of Perm Krai [et al.]; M. A. Baklanov (Ed.). (2018). Perm: Aldari.

Red Data Book of Sverdlovsk Oblast: Animals, plants, fungi (N. S. Korytin, Ed.). (2018). Yekaterinburg: Mir.

Red Data Book of Tyumen Oblast: Animals, plants, fungi (2nd ed.). (2020). Kemerovo: Tekhnoprint.

Report on scientific and research work on the preparation of the Red Data Book of the Murmansk Region (2024) [Contract No. 004, July 29, 2022]. Chief researcher: E. A. Borovichov. https://mpr.gov-murman.ru/files/kniga_1_spiski_vidov_tekst.pdf

Serebryakova T. I. (Ed.), & Sokolova T. G. (Ed.). (1988). Coenopopulations of plants (essays on population biology). Moscow.

Uranov, A. A. (1975). Age spectrum of phytocoenopopulations as a function of time and energy wave processes. Biologicheskie Nauki, (2), 7–33.

Uranov, A. A. (Ed.), & Serebryakova, T. I. (Ed.). (1976). Coenopopulations of plants (basic concepts and structure). Moscow.

Uranov, A. A. (1977). Questions of studying the structure of phytocenoses and species coenopopulations. In Coenopopulations of plants: Development and relationship (pp. 8–20). Moscow.

Vasilevskaya, N. V. (2006). Polivariantnost' razvitiya rasteniy raznykh zhiznennykh form v usloviyakh Severa [Developmental polymorphism of plants of different life forms in northern conditions] (Doctoral dissertation). Murmansk.

Wolfe, A. D., Randle, C. P., Liu, L., & Steiner, K. E. (2005). Phylogeny and biogeography of Orobanchaceae. Folia Geobotanica, 40, 115-134. https://doi.org/10.1007/BF02803247

Zhivotovsky, L. A. (2001). Ontogenetic states, effective density and classification of plant populations. Ekologiya, (1) , 3–7.

Zhukova, L. A. (1987). Dynamics of coenopopulations of herbaceous plants. In Naukova Dumka (pp. 9–19). Kiev.

Zlobin, Yu. A. (1989). Principles and methods of studying cenotic populations. Kazan: Kazan University.

Downloads

Published

2025-10-20

How to Cite

Menshakova, M. ., Gainanova, R., Moskvin, K. ., & Nizikova, A. A. (2025). Castilleja lapponica Gand. (Orobanchaceae) coenopopulation status assessment in the Lovozero Massif (Murmansk Region). Journal of Wildlife and Biodiversity, 9(3), 223–236. https://doi.org/10.5281/zenodo.17386451