Impact of altitude and season on the nutritional profile of honey from various Apis species in Pakistan
DOI:
https://doi.org/10.5281/zenodo.17381502Keywords:
Apis mellifera, Apis cerana, Apis florea, Apis dorsata , HoneyAbstract
The quality and composition of honey can be influenced by geographic location, altitude, honeybee species and season. Honey samples were collected from four areas of different altitudes viz., Bahawalpur (118 m), Kasur (218 m), Kallar Kahar (679 m), and Murree (2291 m) during all four seasons in Pakistan. The collected honey samples were subjected to proximate analysis to evaluate their nutritional composition including moisture, ash, protein, fat, fiber and carbohydrate content. The results indicated that honey produced at higher altitudes (Murree) exhibited higher levels of protein, fat, fiber, and ash content, suggesting that environmental factors at these locations contribute to a richer nutrient profile. In terms of species, honey produced by Apis mellifera and Apis cerana shows higher fructose values as compared to Apis florea and Apis dorsata. The fructose content (30.45%) in summer was also highest compared to other seasons. However, other parameters such as protein, fat, fiber, and carbohydrate values remained relatively stable across seasons. The study revealed that Apis mellifera and Apis cerana produced honey with higher fructose concentrations as compared to Apis florea and Apis dorsata. However, other nutritional components such as protein, fat, fiber, and ash content remained relatively stable across species, suggesting that these traits are more influenced by climatic conditions and geographic location rather than the species of the honeybee. Future studies should focus on the specific floral diversity and climatic conditions to have more refined methods of honey production, enhancing its nutritional and medicinal benefits.
References
Ali, H., Iqbal, J., Raweh, H. S., & Alqarni, A. S. (2021). Proboscis behavioral response of four honey bee Apis species towards different concentrations of sucrose, glucose, and fructose. Saudi journal of biological sciences, 28(6), 3275-3283. https://doi.org/10.1016/j.sjbs.2021.02.069
Al-Kahtani, S., & Taha, E. K. A. (2021). Seasonal variations in nutritional composition of honeybee pollen loads. Journal of the Kansas Entomological Society, 93(2), 105-112. https://doi.org/10.2317/0022-8567-93.2.105
Aqueel, M. A., Shurjeel, H. K., Muhammad, A. B., Raza, M. Y., Akram, I., & Ahsan, M. H. (2023). Seasonal Management of Honeybees for Their Improved Honey Production. Advances in Insect Pollination Technology in Sustainable Agriculture. I K International Pvt Ltd.
Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., Panziera, D. (2020). Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects, 11(4), 239. https://doi.org/10.3390/insects11040239
Bogdanov, S. (2012). Honey as nutrient and functional food. Proteins, 1100, 1400-2700.
Charrondiere, U., Chevassus-Agnes, S., Marroni, S., & Burlingame, B. (2004). Impact of different macronutrient definitions and energy conversion factors on energy supply estimations. Journal of food composition and analysis, 17(3-4), 339-360. https://doi.org/10.1016/j.jfca.2004.03.011
Chua, L. S., & Adnan, N. A. (2014). Biochemical and nutritional components of selected honey samples. Acta Scientiarum Polonorum Technologia Alimentaria, 13(2), 169-179.
DeGrandi-Hoffman, G., Corby-Harris, V., Carroll, M., Toth, A. L., Gage, S., Watkins deJong, E., & Obernesser, B. (2021). The importance of time and place: Nutrient composition and utilization of seasonal pollens by European honey bees (Apis mellifera). Insects, 12(3), 235.
Geana, E. I., Ciucure, C. T., Costinel, D., & Ionete, R. E. (2020). Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Control, 109, 106919. https://doi.org/10.1016/j.foodcont.2019.106919
Harris, C., Balfour, N. J., & Ratnieks, F. L. (2024). Seasonal variation in the general availability of floral resources for pollinators in northwest Europe: A review of the data. Biological Conservation, 298, 110774. https://doi.org/10.1016/j.biocon.2024.110774
Knoll, S., Pinna, W., Varcasia, A., Scala, A., & Cappai, M. G. (2020). The honey bee (Apis mellifera L., 1758) and the seasonal adaptation of productions. Highlights on summer to winter transition and back to summer metabolic activity. A review. Livestock Science, 235, 104011. https://doi.org/10.1016/j.livsci.2020.104011
Lebedev, Y. O., Gorbunov, R., Gorbunova, T. Y., Drygval, A., Kuznetsov, A., Kuznetsova, S., Kapranov, S. (2023). Dynamics of Mortmass Ash Content and Migration of Elements in Different Moisture Conditions of Midmountain Tropical Forests of Central Vietnam. Geography and Natural Resources, 44(1), 63-7. https://doi.org/10.26170/KFG-2021-48
Majtan, J., Bucekova, M., Kafantaris, I., Szweda, P., Hammer, K., & Mossialos, D. (2021). Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science & Technology, 118, 870-886. https://doi.org/10.1016/j.tifs.2021.11.012
Mohammed, M. E. A. (2022). Factors affecting the physicochemical properties and chemical composition of bee’s honey. Food Reviews International, 38(6), 1330-1341. https://doi.org/10.1080/87559129.2020.1810701
Muhammad, N. I. I., & Sarbon, N. M. (2023). Physicochemical profile, antioxidant activity and mineral contents of honey from stingless bee and honey bee species. Journal of Apicultural Research, 62(2), 394-401. https://doi.org/10.1080/00218839.2021.1896214
Nagaraja, N. (2020). Biology of dwarf honeybee, Apis florea fabricius (Hymenoptera: Apidae) The future role of dwarf honey bees in natural and agricultural systems. CRC Press.
Nagaraja, N. (2023). Biology of Asian giant honeybee, Apis dorsata Fabricius (Hymenoptera: Apidae) Role of Giant Honeybees in Natural and Agricultural Systems. CRC Press.
Nannan, L., Huamiao, L., Yan, J., Xingan, L., Yang, L., Tianjiao, W., Xiumei, X. (2022). Geometric morphology and population genomics provide insights into the adaptive evolution of Apis cerana in Changbai Mountain. BMC genomics, 23(1), 64. https://doi.org/10.1186/s12864-022-08298-x
Ouchemoukh, S., Schweitzer, P., Bey, M. B., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food chemistry, 121(2), 561-568. https://doi.org/10.1016/j.foodchem.2009.12.047
Plos, C., Stelbrink, N., Romermann, C., Knight, T. M., & Hensen, I. (2023). Abiotic conditions affect nectar properties and flower visitation in four herbaceous plant species. Flora, 303, 152279. https://doi.org/10.1016/j.flora.2023.152279
Prodanovic, R., Brkic, I., Solesa, K., Ljubojevic Pelic, D., Pelic, M., Bursic, V., & Vapa Tankosic, J. (2024). Bee keeping as a Tool for Sustainable Rural Development, A Review. Journal of Agronomy, Technology and Engineering Management, 7(2), 1054-1066. https://doi.org/10.55817/IXVM2800
Quinlan, G. M., & Grozinger, C. M. (2023). Honey bee nutritional ecology: from physiology to landscapes. Advances in Insect Physiology, 64, 289-345. https://doi.org/10.1016/bs.aiip.2023.01.003
Ranneh, Y., Akim, A. M., Hamid, H. A., Khazaai, H., Fadel, A., Zakaria, Z. A.,Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC complementary Medicine and Therapies, 21, 1-17. https://doi.org/10.1186/s12906-020-03170-5
Singh, D. (2020). Commercial Beekeeping: Scientific Publishers.
Siraj, M., Yaqoob, M., Ayoub, L., Bhat, B. A., Sheikh, M. A., & Irshad, S. S. (2022). Comparative morphometric studies of European honey bee (Apis mellifera) at different altitudes of Kashmir Region, India. International Journal of Environment and Climate Change, 12(11), 3507-3523. https://doi.org/10.9734/ijecc/2022/v12i111399.
Steel, W. F., Aryeetey, E., Hettige, H., & Nissanke, M. (1997). Informal financial markets under liberalization in four African countries. World Development, 25(5), 817-830. https://doi.org/10.1016/S0305-750X(96)00133-7
Vijayan, S., Balamurali, G., Johnson, J., Kelber, A., Warrant, E. J., & Somanathan, H. (2023). Dim-light colour vision in the facultatively nocturnal Asian giant honeybee, Apis dorsata. Proceedings of the Royal Society B, 290(2004), 20231267. https://doi.org/10.1098/rspb.2023.1267
Vincze, C., Leelossy, A., Zajocz, E., & Meszaros, R. (2024). A review of short-term weather impacts on honey production. International Journal of Biometeorology, 69, 303-317. https://doi.org/10.1007/s00484-024-02824-0
Wang, Z., Du, Y., Li, J., Zheng, W., Gong, B., Jin, X., Guo, J. (2024). Changes in health-promoting metabolites associated with high-altitude adaptation in honey. Food chemistry, 449, 139246. https://doi.org/10.1016/j.foodchem.2024.139246
Wu, J., Duan, Y., Gao, Z., Yang, X., Zhao, D., Gao, J., Wang, S. (2020). Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. Lwt, 134, 110225. https://doi.org/10.1016/j.lwt.2020.110225
Wu, J., Han, B., Zhao, S., Zhong, Y., Han, W., Gao, J., & Wang, S. (2022). Bioactive characterization of multifloral honeys from Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Research International, 161, 111808. https://doi.org/10.1016/j.foodres.2022.111808
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.