Habitat suitability modeling of the Caspian Red Deer (Cervus elaphus maral) in the central zone of the Hyrcanian region: Identification of priority conservation areas

Authors

  • Hadi Pourmosa Department of Environment, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • Seyed Mahmood Ghasempouri Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
  • Abdolrasool Salman Mahini Department of Environment, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • HamidReza Rezaei Department of Environment, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

DOI:

https://doi.org/10.5281/zenodo.13823908

Keywords:

Habitat Suitability, Species Distribution Models, Combined Model, Conservation

Abstract

As human development expands, wildlife managers face increasing challenges related to human-wildlife conflicts and land-use changes. Understanding how wildlife selects optimal landscapes is crucial for resolving these conflicts. This study focuses on analyzing the Caspian red deer's habitat status in the Hyrcanian region's central zone to identify optimal habitats. Five habitat suitability models and one combined model were employed to identify areas with high conservation priority for the Maral species. The Random Forest (RF) model was recognized as the best among the species distribution models. Elevation and land use are the most critical factors affecting the distribution of the Maral species. Based on the combined habitat evaluation model, 26.45% of the suitable habitats for the Maral species are located within areas protected by the Department of Environment of Iran. The findings of this research can be used to strengthen or create more efficient pathways for protecting Caspian red deer habitats and to develop conservation plans for areas with high conflict.

References

Adam, C. L., Kyle, C. E., & Young, P. (1992). Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Animal Science, 55(2), 265-270.

Akhani, H., Djamali, M., Ghorbanalizadeh, A., & Ramezani, E. (2010). Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42(1), 231-258.‏

Amininasab, S. M., Zamani, N., Taleshi, H., & Xu, C. C. (2023). Ensemble modelling the distribution and habitat suitability of wild goat Capra aegagrus in southwestern Iran. Biodiversity, 24(3), 124-136.‏

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in ecology & evolution, 22(1), 42-47.‏

Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.‏

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.

Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16(4), 1145-1157.

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, M. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., & Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67.‏

Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8), 921-931.‏

Connor, T., Batter, T. J., Langer, C. O., Cann, J., McColl, C., & Lanman, R. B. (2023). Habitat suitability assessment for tule elk in the San Francisco Bay and Monterey Bay areas. California Fish and Wildlife Journal, 109, e19.

De'Ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243-251.

Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1-15). Berlin, Heidelberg: Springer Berlin Heidelberg.‏

Domisch, S., Kuemmerlen, M., Jähnig, S. C., & Haase, P. (2013). Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota. Ecological Modelling, 257, 1-10.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of animal ecology, 77(4), 802-813.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversit Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.‏y and distributions, 17(1), 43-57.

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual review of ecology, evolution, and systematics, 34(1), 487-515.‏

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 24(1), 38-49.‏

Firouz, E. (2005). The Complete Fauna of Iran. London: I. UK: IB Tauris & co.‏

Frair, J. L., Merrill, E. H., Visscher, D. R., Fortin, D., Beyer, H. L., & Morales, J. M. (2005). Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape ecology, 20, 273-287.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.‏

Fukuda, S., Tanakura, T., Hiramatsu, K., & Harada, M. (2015). Assessment of spatial habitat heterogeneity by coupling data-driven habitat suitability models with a 2D hydrodynamic model in small-scale streams. Ecological informatics, 29, 147-155.

Geist, V. (1998). Deer of the world: their evolution, behaviour, and ecology (Vol. 272). Mechanicsburg: Stackpole books. Swan Hill Press, UK.

Grenié, M., Violle, C., & Munoz, F. (2020). Is prediction of species richness from stacked species distribution models biased by habitat saturation?. Ecological Indicators, 111, 105970.‏

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3), 147-186.

Guisan, A., Edwards Jr, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2-3), 89-100.

Harper, A. A. (2023). Identifying habitat suitability and connectivity for Roosevelt elk (Cervus canadensis roosevelti) on the North Coast of California. Cal Poly Humboldt theses and projects. 690.

Hinton, J. W., Freeman, A. E., St‐Louis, V., Cornicelli, L., & D'Angelo, G. J. (2020). Habitat selection by female elk during Minnesota's agricultural season. The Journal of Wildlife Management, 84(5), 957-967.

Hirzel, A. H., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of applied ecology, 45(5), 1372-1381.

Hirzel, A. H., Helfer, V., & Metral, F. (2001). Assessing habitat-suitability models with a virtual species. Ecological modelling, 145(2-3), 111-121.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological modelling, 199(2), 142-152.

Hou, X., Li, R., He, W., & Ma, K. (2020). Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China. Agricultural Water Management, 230, 105982.‏

Hutchinson, G. E. (1957). The multivariate niche. In Cold Spring Harbor Symposia on Quantitative Biology (Vol. 22, pp. 415-421).

Iravani, M., Schütz, M., Edwards, P. J., Risch, A. C., Scheidegger, C., & Wagner, H. H. (2011). Seed dispersal in red deer (Cervus elaphus L.) dung and its potential importance for vegetation dynamics in subalpine grasslands. Basic and Applied Ecology, 12(6), 505-515.

Javed, S. M. M., Mithun, R., & Sunil, K. (2017). Predicting potential habitat suitability for an endemic gecko Calodactylodes aureus and its conservation implications in India. Tropical Ecology, 58(2), 271-282.

Karami, M., Feyzollahi, K., & Ghadirian, T. (2016). Atlas of Mammals of Iran. Environmental Protection Organization Press. First Edition. 269 pp. (In Persian).

Khosravi, M., Chamani, A., & Mirzaei, R. (2021). Assessing the Impact of Climate Change on the Effectiveness of Iran's Protected Network with Emphasis on the Family Bovidae and Deer. Journal of Natural Environment, 74(2), 208-223. (In Persian).

Kiabi, B.H., Gaemi, A., Jahanshahi, M. and Sassani, A., 2004. Population status, biology and ecology of the Maral) Cervus elaphus maral (in Golestan National Park, Iran. Zoology in the Middle East. No. 33, pp: 125-138.

Komori, O., Eguchi, S., Saigusa, Y., Kusumoto, B., & Kubota, Y. (2020). Sampling bias correction in species distribution models by quasi-linear Poisson point process. Ecological Informatics, 55, 101015.‏

Kroes, H. W. (1977). The niche structure of ecosystems. Journal of Theoretical Biology, 65(2), 317-326.

Labarrere, C. A., Woods, J. R., Hardin, J. W., Campana, G. L., Ortiz, M. A., Jaeger, B. R., ... & Wozniak, T. C. (2011). Early prediction of cardiac allograft vasculopathy and heart transplant failure. American Journal of Transplantation, 11(3), 528-535.‏

Laguna, E., Carpio, A. J., Vicente, J., Barasona, J. A., Triguero-Ocaña, R., Jiménez-Ruiz, S., Gomez-Manzaneque, A., & Acevedo, P. (2021). The spatial ecology of red deer under different land-use and management scenarios: protected areas, mixed farms and fenced hunting estates. Science of the Total Environment, 786, 147124.‏

Lanman, R. B., Kilber, J., Cann, J., Hilson, C., Zullinger, E., Bush, J., Weckerly, F. W. & Batter, T. J. (2022). Road and highway undercrossings as potential critical linkages for California’s elk populations. California Fish and Wildlife Journal, 108, e18.

Li, J., Fan, G., & He, Y. (2020). Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Science of the Total Environment, 698, 134141.‏

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

Lin, Y. P., Lin, W. C., & Wu, W. Y. (2015). Uncertainty in various habitat suitability models and its impact on habitat suitability estimates for fish. Water, 7(8), 4088-4107.

Long, J. T., Neogi, S., Caldwell, C. M., & DeLange, M. P. (2018). Variation inflation factor-based regression modeling of anthropometric measures and temporal-spatial performance: Modeling approach and implications for clinical utility. Clinical Biomechanics, 51, 51-57.‏

Madadi, M., Varasteh Moradi, H., & Karimi, A. (2019). Habitat Assessment and the Most Important Factors Affecting the Distribution of Maral (Cervus elaphus maral) in Golestan National Park. Quarterly Journal of Animal Environment, 11(1), 111-118. (In Persian).

Mawdsley, J. R., O’MALLEY, R. O. B. I. N., & Ojima, D. S. (2009). A review of climate‐change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080-1089.

Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M. V., Loyola, R., Diniz-Filho, J. A. F., Mouillot, D., & Thuiller, W. (2014). Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Global ecology and biogeography, 23(8), 836-847.‏

McCorriston, J. (1994). Acorn eating and agricultural origins: California ethnographies as analogies for the ancient Near East. Antiquity, 68(258), 97-107.

McCullough, D. R., Fischer, J. K., & Ballou, J. D. (1996). From bottleneck to metapopulation: recovery of the tule elk in California. Metapopulations and wildlife conservation, 375-403.

McInturff, A., Xu, W., Wilkinson, C. E., Dejid, N., & Brashares, J. S. (2020). Fence ecology: Frameworks for understanding the ecological effects of fences. BioScience, 70(11), 971-985.

Mocq, J., St-Hilaire, A., & Cunjak, R. A. (2013). Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada). Ecological modelling, 265, 14-25.

Mohammadi, A., Almasieh, K., Nayeri, D., Adibi, M. A., & Wan, H. Y. (2022). Comparison of habitat suitability and connectivity modelling for three carnivores of conservation concern in an Iranian montane landscape. Landscape Ecology, 37(2), 411-430.‏

Mohr, A. S. (2020). A tale of two cervids: habitat selection and spatial ecology of Roosevelt and tule elk in California. Cal Poly Humboldt theses and projects. 374.

Morrison, M.L.; Marcot, B.G. and Mannan, R.W., 1992. Wildlife-habitat relationships: Concepts and applications. University of Wisconsin Press, Madison, Wisconsin, USA. 343 p.

Motevalli, A., Pourghasemi, H. R., & Zabihi, M. (2018). Assessment of GIS-based machine learning algorithms for spatial modeling of landslide susceptibility: case study in Iran. 258-280.

Muñoz-Mas, R., Martínez-Capel, F., Garófano-Gómez, V., & Mouton, A. M. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling & Software, 59, 30-43.

Murray, B. D., Webster, C. R., & Bump, J. K. (2013). Broadening the ecological context of ungulate–ecosystem interactions: the importance of space, seasonality, and nitrogen. Ecology, 94(6), 1317-1326.

Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117-129.‏

Ondier, J. O., Okach, D. O., Onyango, J. C., & Otieno, D. O. (2019). Interactive influence of rainfall manipulation and livestock grazing on species diversity of the herbaceous layer community in a humid savannah in Kenya. Plant Diversity, 41(3), 198-205.‏

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H., Scholes, R. J., Bruford, M. W., Brummitt, N., Butchart , S . H. M., & Wegmann, M. (2013). Essential biodiversity variables. Science, 339(6117), 277-278.‏

Phillips, S.J.; Anderson, R.P. and Schapire, R.E., (2006). Maximum entropy modeling of species geographic distributions. Ecological modeling. Vol. 190, No. 3, pp: 231-259.

Rahmati, O., Kornejady, A., Samadi, M., Deo, R. C., Conoscenti, C., Lombardo, L., Dayal, K., Taghizadeh-Mehrjardi., R., Pourghasemi, H. R., Kumar, S., & Bui, D. T. (2019). PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the total environment, 664, 296-311.

Riddle, A. E., Pilgrim, K. L., Mills, L. S., McKelvey, K. S., & Ruggiero, L. F. (2003). Identification of mustelids using mitochondrial DNA and non-invasive sampling. Conservation genetics, 4(2), 241-243.

Rossi, M., & Reichenbach, P. (2016). LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geoscientific Model Development, 9(10), 3533-3543.‏

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors, in Neurocomputing: Foundations of Research, JA Anderson and E. Rosenfeld, Eds.‏ 696-699.

Rupprecht, F., Oldeland, J., & Finckh, M. (2011). Modelling potential distribution of the threatened tree species Juniperus oxycedrus: how to evaluate the predictions of different modelling approaches?. Journal of Vegetation Science, 22(4), 647-659.

Sala, O. E., Stuart Chapin, F. I. I. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., ... & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770-1774.‏

Scherrer, D., D'Amen, M., Fernandes, R. F., Mateo, R. G., & Guisan, A. (2018). How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution, 9(10), 2155-2166.‏

Schmitt, S., Pouteau, R., Justeau, D., De Boissieu, F., & Birnbaum, P. (2017). Ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution, 8(12), 1795-1803.‏

Segurado, P., & Araujo, M. B. (2004). An evaluation of methods for modelling species distributions. Journal of biogeography, 31(10), 1555-1568.

Sevigny, J., Summers, A., Kalisz, G., & McAllister, K. (2021). Identification of Elk-vehicle incident hotspots on state route 20 in Washington State. Landscape Ecology, 36, 1685-1698.

Shearer, K. A., Hayes, J. W., Jowett, I. G., & Olsen, D. A. (2015). Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand journal of marine and freshwater research, 49(2), 178-191.

Shokri, S., Jafari, A., Rabei, K., Hadipour, E., Alinejad, H., Zeppenfeld, T., Soufi, M., Qashqaei, A., Ahmadpour, M., Zehzad, B., Kiabi, B. H., Pavey, C. R., Balkenhol, N., Waltert, M., & Soofi, M. (2021). Conserving populations at the edge of their geographic range: The endangered Caspian red deer (Cervus elaphus maral) across protected areas of Iran. Biodiversity and Conservation, 30, 85-105.‏

Shruthi, R. B., Kerle, N., Jetten, V., & Stein, A. (2014). Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology, 216, 283-294.

Somodi, I., Lepesi, N., & Botta‐Dukát, Z. (2017). Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecology and evolution, 7(3), 863-872.‏

Soykan, C. U., Eguchi, T., Kohin, S., & Dewar, H. (2014). Prediction of fishing effort distributions using boosted regression trees. Ecological Applications, 24(1), 71-83.

Srinet, R., Nandy, S., & Patel, N. R. (2019). Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecological Informatics, 52, 94-102.‏

Staines, B. W. (1977). Factors affecting the seasonal distribution of red deer (Cervus elaphus) at Glen Dye, north‐east Scotland. Annals of Applied Biology, 87(3), 495-512.‏

Thompson, K. (1961). Riparian forests of the Sacramento valley, California. Annals of the Association of American Geographers, 51(3), 294-315.

Thuiller, W., & Münkemüller, T. (2010). Habitat suitability modeling. Effects of climate change on birds, 77-85.

Torbati Nejad, N.M., & Razm Azar, V. (2010). Principles of Deer Care and Breeding. Gorgan University of Agricultural Sciences and Natural Resources Press. First Edition. 1000 pp. (In Persian).

Vezza, P., Martinez Capel, F. R. A. N. C. I. S. C. O., Muñoz Mas, R. A. F. A. E. L., Alcaraz, J. D., & Comoglio, C. (2012). Habitat suitability modeling with random forest as a tool for fish conservation in mediterranean rivers. In 9th International Symposium on Ecohydraulics 2012 Proceedings. Vienna, Austria, 17–21.

Vilar, L., Woolford, D. G., Martell, D. L., & Martín, M. P. (2010). A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. International Journal of Wildland Fire, 19(3), 325-337.‏

Visscher, D. R., Macleod, I., Janzen, M., Visser, K., Lekas, S., Vujnovic, K., & Vujnovic, D. (2023). Wildlife friendly fence designs and elk fence crossing behavior. Wildlife Society Bulletin, 47(1), e1400.

Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides?. Ecological Modelling, 239, 27-39.‏

Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, 140, 385-394.‏

Walker, I. H., Wilson, P. R., & Beckett, S. D. (2002). Copper supplementation, velvet antler production and growth of rising 2-year-old red deer stags. New Zealand veterinary journal, 50(5), 177-181.

Weckerly, F. W. (2005). Grass and supplemental patch selection by a population of Roosevelt elk. Journal of Mammalogy, 86(3), 630-638.

Wikramanayake, E.; McKnight, M.; Dinerstein, E.; Joshi, A.; Gurung, B. and Smith, D., 2004. Designing a conservation landscape for tigers in Human-Dominated environments. Conservation Biology. Vol. 18, No. 3, pp: 844-839.

Wood, S. N., & Augustin, N. H. (2002). GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological modelling, 157(2-3), 157-177.

Wu, W., Li, Y., & Hu, Y. (2016). Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China. PeerJ, 4, e1756.‏

Yang, M., Sun, Y., Zhang, W., Yuan, H., & Zhang, M. (2019). Variation in winter daily range area of red deer (Cervus elaphus xanthopygus) based on DNA extracted from fecal samples. Journal of forestry research, 30, 1951-1958.

Yi, Y., Cheng, X., Wieprecht, S., & Tang, C. (2014). Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 71, 335-345.

Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., & Zhao, R. (2021). Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 540, 736724.‏

Downloads

Published

2024-09-01

How to Cite

Pourmosa, H., Ghasempouri, M., Salman Mahini, A., & Rezaei, H. (2024). Habitat suitability modeling of the Caspian Red Deer (Cervus elaphus maral) in the central zone of the Hyrcanian region: Identification of priority conservation areas. Journal of Wildlife and Biodiversity, 8(4), 148–172. https://doi.org/10.5281/zenodo.13823908