Seasonal distribution model of African elephants (Loxodonta africana) under a changing environment and land use in Omo National Park, Ethiopia

Authors

  • Girma Timer Jeza Ethiopian Wildlife Conservation Authority, PO Box 386, Addis Ababa, Ethiopia
  • Afework Bekele Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia

DOI:

https://doi.org/10.5281/zenodo.7783039

Keywords:

environmental variables, habitat suitability modelling, Loxodonta africana, MAXENT model, model prediction

Abstract

Overwhelming anthropogenic activities combined with the effects of climate change pose extreme threats to wildlife resources, resulting in habitat loss and the decline of many mammal species. The African elephant (Loxodonta africana) is an endangered large mammal occurring in some protected areas in Africa. In this study, a species distribution model using the spatial maximum entropy algorithm was developed to determine the geographic extent and distribution of the elephant in Omo National Park. Elephant surveys were conducted in the wet and dry season in 2021 and 2022. Occurrence data and the 12 predictor variables were processed and framed, and the corresponding models were built for two seasons separately in the Geographic Information System and R software. The modeled seasonal combined results of the elephant range have a total area of 1999 km2 (39% of the study area), of which 365 km2 (7.2%) is optimal, 748 km2 (14.7%) is suitable, and 886 km2 (17.5%) is moderately suitable. Distance to the rivers, distance to the canals, and land use/land cover contributed most to predicting habitat suitability (10 and 49%, 40 and 16%, and 34 and 29%, respectively) during the wet and dry seasons. Habitat suitability increases as the mean diurnal range (bio 2) and temperature seasonality (bio 4) increase in both seasons and as the distance to rivers increases and decreases during the wet and dry seasons, respectively. Performance ratings were high, with AUC values (area under receiver operating curves) of 0.877 and 0.952 for the wet and dry seasons, respectively. Changing environmental variables and land use interact to influence habitat suitability and wildlife distribution. Our results are vital for understanding the influence of these variables on elephant distribution and movement and, thus, for adaptive management and migration corridor design to maintain species viability and ecosystem functionality in the study area.

Author Biography

Afework Bekele, Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia

2Department of   Zoological Sciences professor

References

REFERENCES

Anderson, R. P., & Gonzalez, I. (2011). Species specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222, 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011

Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393. https://doi.org/10.1111/j.1365-2699.2010.02290.x

Antoine Guisan, Thomas C Edwards Jr, & Trevor Hastie. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157(2–3), 89–100.

Asbl C/, N., & Fortrop, O. (2008). Omo National Park report for the Wet season aerial survey by Pierre-Cyril Renaud for African Parks Ethiopia On behalf of Nature+. www.fsagx.be

Ashiagbor, G., & Danquah, E. (2017). Seasonal habitat use by Elephants (Loxodonta africana) in the Mole National Park of Ghana. Ecology and Evolution, 7(11), 3784–3795. https://doi.org/10.1002/ece3.2962

Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11, 854–866. https://doi.org/10.3390/e11040854

Barnard, P., & Thuiller, W. (2008). Introduction. Global change and biodiversity: future challenges. Biol Lett , 4, 553–555. https://doi.org/10.1098/rsbl.2008.0374. PMID: 18664413; PMCID: PMC2610103.

Bergstrom, R., & Skarpe, C. (1999). The abundance of large wild herbivores in a semi-arid savanna in relation to seasons, pans and livestock. Afr J Ecol, 37: 12–26. https://doi.org/10.1046/j.1365-2028.1999.00165.x

Boitani, L., Sinibaldi, I. , Corsi, F., De Biase, A. , C., Carranza, I. D. I., Ravagli, M. , Reggiani, G., Rondinini, C., & Trapanese, P. (2008). Distribution of medium to large-sized African mammals based on habitat suitability models. Biodivers.Conserv, 17(3), 605-621. https://doi.org/10.1007/s10531-007-9285-0

Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib., 20(1), 1–9. https://doi.org/10.1111/ddi.12144

Breiman, L. (2001). Random forests. Mach. Learn., 45, 5–32. https://doi.org/10.1023/A:1010933404324, Corpus ID: 89141

Carpenter, G., Gillison, A. N., & Winter, J. (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv., 2, 667–680. https://doi.org/10.1007/BF00051966

Chase, M. J., Schlossberg, S., Griffin, C. R., Bouché, P. J. C., Djene, S. W., Elkan, P. W., Ferreira, S., Grossman, F., Kohi, E. M., Landen, K., Omondi, P., Peltier, A., Jeanetta Selier, S. A., & Sutcliffe, R. (2016). Continent-wide survey reveals massive decline in African savannah elephants. PeerJ, (8). https://doi.org/10.7717/peerj.2354

Cherie Enawgaw. (2013). Reconciling Conservation and Investment in the Gambella Omo Landscape, Ethiopia. Ethiopian Wildlife Conservation Authority.

Cherie Enawgaw, Derbe Deksios, & Girma Timer. (2011). Existing Challenges: Plantation Development versus Wildlife Conservation in the Omo-Tama-Mago Complex. Ethiopian Wildlife Conservation Authority, Addis Ababa, Ethiopia.

Cherie Enawgaw. (1996). Distribution, abundance and age structure of elephants in Omo National Park, Ethiopia. Walia, 17, 1-10.

Cleary, K. A., Cleary, K. A. , W. L. P., & Finegan, B. (2017). Comparative landscape genetics of two frugivorous bats in a biological corridor undergoing agricultural intensification. Molecular Ecology, 26(18), 4603–4617. https://doi.org/10.1111/mec.14230. Epub 2017 Aug 8. PMID: 28672105.

Cowley, M. J. R., Wilson, R. J., Leon-Cortes, J. L. , Gutirrez, J. L., Bulman, C. R. , & Thomas, C. D. (2000). Habitat-based statistical models for predicting the spatial distribution of butterflies and day-flying moths in a fragmented landscape. J ApplEcol , 37, 60–72. https://doi.org/10.1046/j.1365-2664.2000.00526.x

Cushman, S. A., Chase, M., & Griffin, C. (2005). Elephants in space and time. Oikos, 109(2), 331-341. doi.10.1111/j.0030-1299.2005.13538.x

de Beer, Y., & van Aarde, R. J. (2008). Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa’s arid savannas? . Journal of Arid Environment., 72:, 2017–2025. https://doi.org/10.1016/J.JARIDENV.2008.07.002, Corpus ID: 56371550

Dejene, S. W., Mpakairi, K. S., Kanagaraj, R., Wato, Y. A., & Mengistu, S. (2021). Modelling Continental Range Shift of the African Elephant (Loxodonta africana) under a Changing Climate and Land Cover: Implications for Future Conservation of the Species. African Zoology, 56(1), 25–34. https://doi.org/10.1080/15627020.2020.1846617

Dejene, S. W. (2016). The African Elephant (Loxodonta africana) in Ethiopia: A Review. European Journal of Biological Sciences, 8(1), 8–13. https://doi.org/10.5829/idosi.ejbs.2016.8.01.1112

Dormann, C. F., Elith, J., Bacher, S. , Buchmann, C., Carl, G., Garc, J. R. , Gruber, B., Lafourcade, B., Leit, P. J. , Tamara, M. , Mcclean, C. , Osborne, P. E. , Der, B. S., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dunkin, R. C., Wilson, D., Way, N., Johnson, K., & Williams, T. M. (2013). Climate influences thermal balance and water use in African and Asian elephants: Physiology can predict drivers of elephant distribution. Journal of Experimental Biology, 216(15), 2939–2952. https://doi.org/10.1242/jeb.080218

Elith, J., Graham, C. H., Anderson, R. P., & Dudik, M. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography1, 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith, J., Kearney, M. , & Phillips, S. (2010). The art of modelling range shifting species. . Methods in Ecology and Evolution, 1, 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

Elith, J., Leathwick, & John, R. (2009). “Species Distribution Models: Ecological Explanation and Prediction Across Space and Time”. Annual Review of Ecology, Evolution, and Systematics., 40, 677–697. https://doi.org/10.1146/ANNUREV.ECOLSYS.110308.120159, Corpus ID: 86460963

Elith, J., Phillips, S. J., Hastie, T. , Dudík, M. , Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity Distrib., 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Ethiopian Sugar Corporation (ESC). (2019). Kuraz Sugar Development Project EIA Feasibility Report. Ethiopian Sugar Corporation Addis Ababa, Ethiopia.

Ethiopian Wildlife Conservation Authority( EWCA). (2015). Ethiopian Elephant Action Plan. Ethiopian Wildlife Conservation Authority Addis Ababa, Ethiopia.

Ethiopian Wildlife Conservation Authority (EWCA). (2017a). Ethiopian Wildlife Reconciling Conservation and development project a case of Omo National park and sugar development project (Amharic report). Addis Ababa, Ethiopia.

Ethiopian Wildlife Natural History Society (EWNHS). (1996). Ethiopian Wildlife Important Bird Areas of Ethiopia: A First Inventory. Ethiopian Wildlife and Natural History Society (EWNHS), Addis Ababa, Ethiopia.

Evangelista, P., Kumar. S., Stohlgren, T. . J., Jarnevich, C. S. , Crall, A. W., Norman, J. B. , I., & Barnett, D. (2008). Modeling invasion for a habitat generalist and a specialist plant species. Divers. Distrib., , 14, 808–817. https://doi.org/10.1111/j.1472-4642.2008.00486.x

Evangelista, P., Norman, J., Berhanu, L. , . ., Kumar, S., & Alley N. (2008). Predicting habitat suitability for the endemic mountain nyala (Tragelaphus buxtoni) in Ethiopia. Wildl Res., 35, 409–416. https://doi.org/10.1071/WR07173

Fekede, R. J., HaoNing, W., Hein, V. G., & XiaoLong, W. (2021). Could wild boar be the Trans-Siberian transmitter of African swine fever? Transboundary and Emerging Diseases, 68(3), 1465–1475. https://doi.org/10.1111/tbed.13814

Fekede, R. J., van Gils, H., Huang, L. Y., & Wang, X. L. (2019). High probability areas for ASF infection in China along the Russian and Korean borders. Transboundary and Emerging Diseases, 66(2), 852–864. https://doi.org/10.1111/tbed.13094

Ferguson, A. (2021). Mammals of Ethiopia, Eritrea, Djibouti and Somalia: field guide to the larger mammals of the Horn of Africa. Journal of Mammalogy, 102, 1203–1204. https://doi.org/10.1093/jmammal/gyab065

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Garstang, M., Davis, R. E., Leggett, K., Frauenfeld, O. W., Greco, S., Zipser, E., & Peterson, M. (2014). Response of African elephants (Loxodonta africana) to seasonal changes in rainfall. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0108736

Gibson, L. A. , Wilson, B. A. , Cahill, D. M. , & Hill, J. (2004). Spatial prediction of rufous bristle bird habitat in a coastal heathland: a GIS-based approach. J ApplEcol, 41, 213–223.

Gizaw, G. (2021). Updating Protected Areas database of Ethiopia! @ WDPA www.iucnprotectedareaplanet.net. www.iucnprotectedareaplanet.net

Gobush, K., & Wittemyer, G. (2021). Loxodonta africana, African Savanna Elephant Forest elephant behavior and conservation View project Great Elephant Census-First Initiative View project. https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T181008073A181022663.en

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Hema, E. M., Barnes, R. F. W., & Guendal, W. (2010). The seasonal distribution of savannah elephants (Loxodonta africana africana) in Nazinga Game Ranch, southern Burkina Faso. Pachyderm, 48:, 33–40. UR - https://pachydermjournal.org/index.

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography , 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. ,. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

Hillman, J. C. (1993). Ethiopia: compendium of wildlife conservation information. Ethiopian Wildlife Conservation Organization and New York Zoological Society, Addis Ababa.

IUCN. (2021; March 25).African elephant species now Endangered and Critically Endangered - IUCN Red List. . IUCN Press Release. .

Jachmann, H. (1988). Numbers, distribution and movements of the Nazinga elephant. . Pachyderm, 10, 16–21.

Junior, P. D. M., & Nobrega, C. C. ,. (2018). Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLOS ONE , 13(9). https://doi.org/10.1371/journal.pone.0202403

Kebede, F., Bekele, A., Moehlman, P., & Evangelista, P. (2012). Endangered Grevy’s zebra in the Alledeghi Wildlife Reserve, Ethiopia: species distribution modeling for the determination of optimum habitat. Endangered Species Research, 17(3), 237–244. https://doi.org/10.3354/esr00416

Keeley, A. T. H., Beier, P., Keeley, B. W., & Fagan, M. E. (2017). Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landscape and Urban Planning, 161, 90–102. https://doi.org/10.1016/j.landurbplan.2017.01.007

Kinahan A.A, Pimm S.L, & van Aarde R.J. (2007). Ambient temperature as a determinant of landscape use in the savanna elephant, Loxodonta Africana . . Journal of Thermal Biology, 32,(1), 47–58. https://doi.org/10.1016/j.jtherbio.2006.09.002

Korennoy, F. I., Gulenkin, V. M., Malone, J. B. , Mores, C. N. , Dudnikov, S. A., & Stevenson, M. A. (2014). Spatio‐temporal modeling of the African swine fever epidemic in the Russian Federation, 2007‐2012. . Spatial and Spatio‐Temporal Epidemiology, 11, 135-141. https://doi.org/10.1016/j.sste.2014.04.002

Kufa, C. A., Bekele, A., & Atickem, A. (2022). Impacts of climate change on predicted habitat suitability and distribution of Djaffa Mountains Guereza (Colobus guereza gallarum, Neumann 1902) using MaxEnt algorithm in Eastern Ethiopian Highland. Global Ecology and Conservation, 35. https://doi.org/10.1016/j.gecco.2022.e02094

Lamprey, R. H. (1994). Aerial census of wildlife in Omo and Mago National Parks, Ethiopia: July 29 to August 4, 1994. London and Cambridge: Ecosystems Consultants / EDG.

Landau, S., & Everitt, B. S. (2004). A handbook of statistical analyses using SPSS. Boca Raton: Chapman & Hall/CRC. Press LLC.

Largen, M. J., & Yalden, D. W. (1987). The decline of elephant and black rhinoceros in Ethiopia. Oryx, 21(2), 103–106. https://doi.org/10.1017/S0030605300026636

Lindsaya, K., Chaseb, M., Landenb, K., & Nowakc, K. (2017). The shared nature of Africa’s elephants. Biological Conservation, 215, 260–267. https://doi.org/10.1016/j.biocon.2017.08.021

Liu, S., Yin, Y., Li, J., Cheng, F. , Dong, S., & Zhang, Y. (2018). Using cross scale landscape connectivity indices to identify key habitat resource patches for Asian elephants in Xishuangbanna, China. Landscape and Urban Planning, 171, 80–87. https://doi.org/10.1016/j.landurbplan.2017.09.017

Merow, C., Smith Jr., M.J., T. C. E., Guisan, A., Mcmahon, S. M., Thuiller, W., Wüest, R. . O., & Zimmermann, N. E. (2014). What do we gain from simplicity versus complexity in species distribution models ? . Ecography , 37, 1267-1281. https://doi.org/10.1111/ecog.00845

Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D., & Fuller, A. (2016). Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conservation Physiology, 4(1). https://doi.org/10.1093/conphys/cow044

Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ, 2017(3). https://doi.org/10.7717/peerj.3093

Nelleman, C., Formo, R. K., Blanc, J., Skinner D, Milliken, T., & De Meulenaer T. (2013). Elephants in the dust–the African elephant crisis. A rapid response assessment. United Nations Environment Programme. United Nations Environment Programme, GRID–Arendal.

Norton-Griffiths, M. (1978). Counting Animals. Handbook Number 1. African Wildlife Leadership Foundation, Nairobi.

Owen-Smith, N. R. ,. (1988). Mega herbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, London, Britain.

Pearson, R. G., Raxworthy, C. J. , Nakamura, M. , & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 34, 102–117.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model. , 190, 231–259. Doi:10.1016/j.ecolmodel.2005.03.026

Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). Maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning. . ACM Press, New York, NY, 655–662.

Pittiglio, C., Skidmore, A. K. , van Gils Hamj, & Prins, H. H. T. (2011). Identifying transit corridors for elephant using a long time-series. . International Journal of Applied Earth Observation and Geoinformation, 14, 61–72. https://doi.org/10.1016/j.jag.2011.08.006

Pr´eau, C., Grandjean, F., Sellier, Y. , Gailledrat, M. , Bertrand, R., & Isselin-nondedeu, F. (2020). Habitat patches for newts in the face of climate change: local scale assessment combining niche modelling and graph theory. Sci. Rep., 10, 1–13. https://doi.org/10.1038/s41598-020-60479-4

Ratti, J. T., Smith, L. M., Hupp, J. . W., & Looke, J. L. (1983). Line transect estimates of density and the winter mortality of Gray partridge. . J. Wildl. Mangt. , 47, 1088–1096.

Robin, C., Dunkin.l, Wilson, D. , Way, N., Johnson, K. , & Williams, T. M. (2013). Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA, Wildlife Safari, Winston, OR, USA, Six Flags Discovery Kingdom, Vallejo, CA, USA and Have Trunk Will Travel, Perris, CA, USA. Author for correspondence (dunkin@biology.ucsc.edu).

Ryan, S. J., & Jordaan, W. (2005). Activity patterns of African Buffalo (Syncerus caffer) in the Lower Sabie region, Kruger National Park, South Africa. Koedoe , 48, 117–124. Pretoria. ISSN 0075-6458.

Smeraldo, S., Bosso, L., Salinas-Ramos, V. B., Ancillotto, L. , S´anchez-Cordero, V., Gazaryan, S., & Russo, D. (2021). Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal. Rev. , 51(4), 551–584. https://doi.org/10.1111/mam.12247

Smit, I. J., Grant, C. C., & Whyte, I. J. (2007). Landscape-scale sexual segregation in the dry season distribution and resource utilization of elephants in Kruger National Park, South Africa. Diversity & Distributions, 13(2), 225–236. http://www.jstor.org/stable/4539914

Stephenson, J., & Mizuno, A. (1978). .Recommendations on the conservation of wildlife in the Omo-Tama-Mago Rift Valley of Ethiopia. Ethiopian Wildlife Conservation Organization, Addis Ababa. Mimeo, 56.

Stockwell, D. R. B., & Peterson, A. T. (2002). Effects of sample size on accuracy of species distribution models. Ecol Modell , 148, 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X

Stokke, S., & Du Toit, J. T. (2002). Sexual segregation in habitat use by elephants in Chobe National Park, Botswana. African Journal of Ecology, 1., 40(4), 360-371. https://doi.org/10.1046/j.1365-2028.2002.00395.x

Su, H., Bista, M., & Li, M. (2021). Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. , 11,14135. https://doi.org/10.1038/s41598-021-93540-x.

Sutherland, W. J. (2006). Ecological Census Techniques: A Handbook. (2nded.). Cambridge University Press, New York, NY, USA,

Swets, J. A., (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615

Thaker, M., Gupte, P. R., Prins, H. H. T., Slotow, R., & Vanak, A. T. (2019). Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Frontiers in Ecology and Evolution, 7(JAN). https://doi.org/10.3389/fevo.2019.00004

Thomaes, A. , Kervyn, T. , & Maes, D. (2008). Applying species distribution modeling for the conservation of the threatened saproxylic stag beetle (Lucanus cervus). . BiolConserv , 141, 1400–1410. https://doi.org/10.1016/j.biocon.2008.03.018

Thorn, J. S., Nijman, V. , Smith, D., & Nekaris, K. A. I. (2009). Ecological niche modeling as a technique for assessing threats and setting conservation priorities for Asian slow lories (primates:Nycticebus). Divers.Dist., 15, 289–298. https://doi.org/10.1111/j.1472-4642.2008.00535.x

Thouless, C. R., Dublin, J. J., Blanc, D. P., Skinner, T. E., Daniel, R. D., Taylor, F., Maisels, H. L., & FrederickandBouché, P. (2016). African Elephant Status Report 2016: an update from the African Elephant Database. Occasional Paper Series of the IUCN Species Survival Commission, No. 60 IUCN / SSC African Elephant Specialist Group. IUCN, Gland, Switzerland. vi + 309pp. vi(309).

Traill, L. W., & Bigalke, R. C. (2006). A presence-only habitat suitability model for large grazing African ungulates and its utility for wildlife management. African Journal of Ecology, 45, 347-354. http://dx.doi.org/10.1111/j.1365-2028.2006.00717.x

Western, D., & Lindsay, W. K. . (1984). Seasonal herd dynamics of a savanna elephant population. Afr. J. Ecol. , 22, 229–244. https://doi.org/10.1111/j.1365-2028.1984.tb00699.x

Xu, W., Fayrer-hosken, R., Madden, M., Simms, C., Mu, L., & Presotto, A. (2020). Coupling African elephant movement and habitat modeling for landscape availability-suitability-connectivity assessment in Kruger National Park. Pachyderm, 58, 97–106. Retrieved from https://pachydermjournal.org/index.php/pachyderm/article/view/422

Yirmed, D. (2010). The Ecology and Conservation of the Relic Elephant Population in the Horn of Africa. PhD Thesis, University of Melbourne, Australia.

York, P., Evangelista, P., Kumar, S., Graham, J., Flather, C., & Stohlgren, T. (2011). A habitat overlap analysis derived from Maxent for Tamarisk and the south-western willow flycatcher. . Front Earth Sci , 5, 120–129. http://dx.doi.org/10.1007/s11707-011-0154-5

Zhu, B., Wang, B., Zou, B., Xu, Y., Yang, B., Yang, N., & Ran, J. (2020). Assessment of habitat suitability of a high-mountain Galliform species, buff-throated partridge (Tetraophasis szechenyii). Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2020.e01230

Zurell, D., Zimmermann, N. E., Gross, H., Baltensweiler, A., Sattler, T., & Wüest, R. O. (2019). Testing species assemblage predictions from stacked and joint species distribution models. J. Biogeogr., 47, 101–113. https://doi.org/10.1111/jbi.13608

Downloads

Published

2023-03-29

How to Cite

Jeza, G. T., & Bekele, A. (2023). Seasonal distribution model of African elephants (Loxodonta africana) under a changing environment and land use in Omo National Park, Ethiopia. Journal of Wildlife and Biodiversity, 7(3), 96–117. https://doi.org/10.5281/zenodo.7783039