Ambient levels and health risk assessment of BTEX and inorganic pollutants in the vicinity of mega-industrial area, Iran

Authors

  • Ahmad Tarassoli Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Imam Reza Street, Noor, Mazandaran, Iran
  • Abbas Esmaili Sari Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Imam Reza Street, Noor, Mazandaran, Iran
  • Nader Bahramifar Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Imam Reza Street, Noor, Mazandaran, Iran

DOI:

https://doi.org/10.5281/zenodo.14570543

Keywords:

BTEX, spatial mapping, seasonal distribution, lifetime cancer risk, South Pars

Abstract

BTEX, SO2, NO2 and GLO are important components in the ambient air that have the potential to increase population health risks. In this study, active sampling was applied for BTEX based on NIOSH manual of analytical method 1501 and SO2, NO2 and GLO concentrations were monitored using an ambient analyzer during the period April to September 2017 at three areas in the vicinity of gas refineries and petrochemical's complexes located in southern Iran. The average values of SO2 and NO2 concentrations in the ASP area (near the industrial zone) varied from 97.2 to 128.1 μg m-3  in the evening hours and from 50.2 to 62.3 μg m-3 in the morning hours respectively. The lowest concentration of NO2 was observed during afternoon hours when GLO showed a peak. The maximum pikes of GLO concentration were observed at 13:00 PM with 249.3 μg m−3. For BTEX, the greatest average concentration was observed in the ASP area with 12.7 μg m−3 in July month. The HQ for all pollutants was <1.0 at three areas. The lifetime cancer risk of benzene obtained for >12 years (adult) who living in the ASP area is higher than the limits recommended by USEPA. Sensitivity analysis show that benzene and ethylbenzene concentrations and body weight have greater impact on the health risk assessment.

References

Abdul-Wahab, S., Elkamel, A., Ahmadi, L., Chan, K., 2015. Study of SO2 dispersion from a proposed refinery in newfoundland and labrador, Canada 25, 283–294.

Agency for Toxic Substances and Disease Registry(ATSDR), 1998. Toxicological profile for sulfur dioxide. www.atsdr.cdc.gov/toxprofiles/tp116.pdf

Amini, H., Schindler, C., Hosseini, V., Yunesian, M., Künzli, N., 2017. Land use regression models for alkylbenzenes in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR). Environ. Sci. Technol. 51, 8481–8490. https://doi.org/10.1021/acs.est.7b02238

Atabi, F., Jafarigol, F., Moattar, F., Nouri, J., 2016. Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery. Environ. Monit. Assess. 188. https://doi.org/10.1007/s10661-016-5508-8

Axelsson, G., Barregard, L., Holmberg, E., Sallsten, G., 2010. Cancer incidence in a petrochemical industry area in Sweden. Sci. Total Environ. 408, 4482–4487. https://doi.org/10.1016/j.scitotenv.2010.06.028

Baltrenas, P., Baltrenaite, E., Sereviciene, V., Pereira, P., 2011. Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ. Monit. Assess. 182, 115–127. https://doi.org/10.1007/s10661-010-1862-0

Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. Air Waste 44, 881–899. https://doi.org/10.1080/1073161X.1994.10467290

Chen, M.J., Lin, C.H., Lai, C.H., Cheng, L.H., Yang, Y.H., Huang, L.J., Yeh, S.H., Hsu, H.T., 2016. Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex. Aerosol Air Qual. Res. 16, 1954–1966. https://doi.org/10.4209/aaqr.2015.05.0372

Civan, M.Y., Elbir, T., Seyfioglu, R., Kuntasal, O.O., Bayram, A., Dogan, G., Yurdakul, S., Andic, O., Muezzinoglu, A., Sofuoglu, S.C., Pekey, H., Pekey, B., Bozlaker, A., Odabasi, M., Tuncel, G., 2015. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos. Environ. 103, 102–113. https://doi.org/10.1016/j.atmosenv.2014.12.031

Dehghani, M.H., Sanaei, D., Nabizadeh, R., Nazmara, S., Kumar, P., 2017. Source apportionment of BTEX compounds in Tehran, Iran using UNMIX receptor model. Air Qual. Atmos. Heal. 10, 225–234. https://doi.org/10.1007/s11869-016-0425-0

European Environment Agency, 2017. Air quality in Europe — 2017 report, EEA Technical Report. https://doi.org/10.2800/22775

Fustinoni, S., Campo, L., Satta, G., Campagna, M., Ibba, A., Tocco, M.G., Atzeri, S., Avataneo, G., Flore, C., Meloni, M., Bertazzi, P.A., Cocco, P., 2012. Environmental and lifestyle factors affect benzene uptake biomonitoring of residents near a petrochemical plant. Environ. Int. 39, 2–7. https://doi.org/10.1016/j.envint.2011.09.001

Kalabokas, P.D., Hatzianestis, J., Bartzis, J.G., Papagiannakopoulos, P., 2001. Atmospheric concentrations of saturated and aromatic hydrocarbons around a Creek oil refinery. Atmos. Environ. 35, 2545–2555. https://doi.org/10.1016/s1352-2310(00)00423-4

Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ. Pollut. 151, 362–367. https://doi.org/10.1016/j.envpol.2007.06.012

Lin, W., Xu, X., Ge, B., Liu, X., 2011. Gaseous pollutants in Beijing urban area during the heating period 2007-2008: Variability, sources, meteorological, and chemical impacts. Atmos. Chem. Phys. 11, 8157–8170. https://doi.org/10.5194/acp-11-8157-2011

Ma, X., Jia, H., 2016. Particulate matter and gaseous pollutions in three megacities over China: Situation and implication. Atmos. Environ. 140, 476–494. https://doi.org/10.1016/j.atmosenv.2016.06.008

Marciulaitienė, E., Serevicienė, V., Baltrenas, P., Baltrenaite, E., 2017. The characteristics of BTEX concentration in various types of environment in the Baltic Sea Region, Lithuania. Environ. Sci. Pollut. Res. 24, 4162–4173. https://doi.org/10.1007/s11356-016-8204-x

Masih, A., Lall, A.S., Taneja, A., Singhvi, R., 2017. Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere 176, 8–17. https://doi.org/10.1016/j.chemosphere.2017.02.105

Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H.R., Ebrahimi Aval, H., Ahmadi, E., Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A., Azari, A., 2016. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 163, 601–609. https://doi.org/10.1016/j.chemosphere.2016.07.088

Office of Environmental Health Hazard Assessment(OEHHA), 2003. Air Toxics Hot Spots Program Risk Assessment Guidelines The Air Toxics Hot Spots Program Guidance Manual Risk Assessments.

Office of Environmental Health Hazard Assessment(OEHHA), 2009. Technical support document for cancer potency factores. Exposure routes and study types used to derive cancer unit risks and slope factors H-1 H-2 1–6. https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009

Pan, B.J., Hong, Y.J., Chang, G.C., Wang, M.T., Cinkotai, F.F., Ko, Y.C., 1994. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan. J. Toxicol. Environ. Health 43, 117–129. https://doi.org/10.1080/15287399409531908

Pandya, G.H., Gavane, A.G., Bhanarkar, A.D., Kondawar, V.K., 2006. Concentrations of volatile organic compounds (VOCs) at an oil refinery. Int. J. Environ. Stud. 63, 337–351. https://doi.org/10.1080/00207230500241918

Ragothaman, A., Anderson, W.A., 2017. Air Quality Impacts of Petroleum Refining and Petrochemical Industries. Environments 4, 66. https://doi.org/10.3390/environments4030066

Ramirez, N., Cuadras, A., Rovira, E., Borrull, F., Marce, R.M., 2012. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 39, 200–209. https://doi.org/10.1016/j.envint.2011.11.002

Reiss, R., 2006. Temporal trends and weekend-weekday differences for benzene and 1,3-butadiene in Houston, Texas. Atmos. Environ. 40, 4711–4724. https://doi.org/10.1016/j.atmosenv.2006.04.023

Ren, M., Li, N., Wang, Z., Liu, Y., Chen, X., Chu, Y., Li, X., Zhu, Z., Tian, L., Xiang, H., 2017. The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: Comparison of time-series and case-crossover analyses. Sci. Rep. 7, 1–9. https://doi.org/10.1038/srep40482

Ryerson, T.B., 2003. Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas. J. Geophys. Res. 108, 4249. https://doi.org/10.1029/2002JD003070

Saiz-Lopez, A., Adame, J.A., Notario, A., Poblete, J., Bolivar, J.P., Albaladejo, J., 2009. Year-round observations of NO, NO2, O3, SO2, and toluene measured with a DOAS system in the industrial area of puertollano, Spain. Water. Air. Soil Pollut. 200, 277–288. https://doi.org/10.1007/s11270-008-9912-8

Sexton, K., Linder, S.H., Marko, D., Bethel, H., Lupo, P.J., 2007. Comparative assessment of air pollution-related health risks in Houston. Environ. Health Perspect. 115, 1388–1393. https://doi.org/10.1289/ehp.10043

Soltanieh, M., Zohrabian, A., Gholipour, M.J., Kalnay, E., 2016. A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int. J. Greenh. Gas Control 49, 488–509. https://doi.org/10.1016/j.ijggc.2016.02.010

Song, F., Young Shin, J., Jusino-Atresino, R., Gao, Y., 2011. Relationships among the springtime ground–level NOx, O3 and NO3 in the vicinity of highways in the US East Coast. Atmos. Pollut. Res. 2, 374–383. https://doi.org/10.5094/APR.2011.042

Tsai, S.P., Cardarelli, K.M., Wendt, J.K., Fraser, A.E., 2004. Mortality patterns among residents in Louisiana’s industrial corridor, USA, 1970-99. Occup. Environ. Med. 61, 295–304. https://doi.org/10.1136/oem.2003.007831

US EPA, 1989. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). Off. Emerg. Remedial Response 1, 1–291. https://doi.org/EPA/540/1-89/002

Villanueva, F., Tapia, A., Amo-Salas, M., Notario, A., Cabanas, B., Martinez, E., 2015. Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. Int. J. Hyg. Environ. Health 218, 522–534. https://doi.org/10.1016/j.ijheh.2015.05.004

WHO, 2000. Air quality guidelines for Europe. Environ. Sci. Pollut. Res. 3, 23–23. https://doi.org/10.1007/BF02986808

World Health Organization, 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. Geneva World Heal. Organ. 1–22. https://doi.org/10.1016/0004-6981(88)90109-6

Yoo, H.J., Kim, J., Yi, S.M., Zoh, K.D., 2011. Analysis of black carbon, particulate matter, and gaseous pollutants in an industrial area in Korea. Atmos. Environ. 45, 7698–7704. https://doi.org/10.1016/j.atmosenv.2011.02.049

Zhang, Y., Mu, Y., Liu, J., Mellouki, A., 2012. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 24, 124–130. https://doi.org/10.1016/S1001-0742(11)60735-3

Published

2024-10-05

How to Cite

Tarassoli, A. ., Esmaili Sari, A., & Bahramifar, N. . (2024). Ambient levels and health risk assessment of BTEX and inorganic pollutants in the vicinity of mega-industrial area, Iran. Journal of Wildlife and Biodiversity, 9(1), 17–40. https://doi.org/10.5281/zenodo.14570543