Acute toxicity of lead on the survival of Macrobiotus hufelandi (Eutardigrada: Parachela: Macrobiotidae)


  • Duygu Berdi Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey
  • Danial Nassouhi Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey
  • Enes Çiftci Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey
  • Berke Güner Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey
  • Burcu Trampacı Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey
  • Serkan Gülsoy Department of Forest Engineering, Faculty of Forestry, Isparta University of Applied Sciences, 32260, Isparta, Turkey
  • Ahmet Altındağ Ankara University, Faculty of Science, Department of Biology, Dögol Street, 06100, Ankara, Turkey



Acute toxicity, Tardigrada, Lead, LC50, Macrobiotus


Aquatic ecosystems are constantly exposed to heavy metals and various chemicals that cause toxic effects on living organisms with increasing human activity. The tardigrades can survive in extreme conditions, in the present study, their ability to survive in various concentrations of toxic metal (lead) was evaluated. The acute mean lethal toxicity (LC50) indicates toxic effect assessment on organisms after exposure to heavy metals. This study assessed for the first time the LC50 values of lead toxicity after 24, 48, 72, and 96 hours of exposure in the tardigrade species Macrobiotus hufelandi are presented, based on animal mortality. The tolerance of Mac. hufelandi to lead is quite high in the 24 hours (LC50: 94.651 mg/L). The LC50 was estimated as 43,540 mg/L after 48 hours of exposure, and the mortality rates increased depending on time and concentration, LC50 was estimated as 22,344 mg/L after 72 hours, and calculated as 8,048 mg/L after the 96th hour. In addition, for the differences in the number of tardigrade deaths over time between groups (pairwise) Friedman's test findings were found between 24h-96h, 48h-96h and 24h-72h, respectively. The results demonstrate that tardigrades can be appropriate invertebrate models to provide insights into heavy metal tolerance research.



Alkan, N., Alkan, A., Demirak, A., & Bahloul, M. (2020). Metals/metalloid in marine sediments, bioaccumulating in macroalgae and a mussel. Soil and Sediment Contamination: An International Journal, 29(5), 569-594.

Altındağ, A., Ergönül, M., Yigit, S., & Baykan, O. (2008). The acute toxicity of lead nitrate on Daphnia magna. African Journal of Biotechnology, 7(23), 4298-4300.

Antonio, M. T., López, N., & Leret, M. L. (2002). Pb and Cd poisoning during development alters cerebellar and striatal function in rats. Toxicology, 176(1-2), 59-66.

Apaydın, A., Kabaoğlu, H., Apaydın, G., Şirin, M., Cengiz, E., Köksal, O. K., Baltaş, H., & Tıraşoğlu, E. (2022). Evaluation of ecological risk, source, and spatial distribution of some heavy metals in marine sediments in the Middle and Eastern Black Sea region, Turkey. Environmental Science and Pollution Research, 29(5), 7053-7066.

Arias-Almeida, J. C., & Rico-Martínez, R. (2011). Toxicity of cadmium, lead, mercury and methyl parathion on Euchlanis dilatata Ehrenberg 1832 (Rotifera: Monogononta). Bulletin of environmental contamination and toxicology.

Arslan, Ş., & Avşar, Ö. (2020). Assessment of heavy metal pollution in Köyceğiz-Dalyan coastal lagoon watershed (Muğla) SW Turkey. Arabian Journal of Geosciences, 13(15), 719.

Balmford, A., Fisher, B., Green, R. E., Naidoo, R., Strassburg, B., Kerry Turner, R., & Rodrigues, A. S. (2011). Bringing ecosystem services into the real world: an operational framework for assessing the economic consequences of losing wild nature. Environmental and Resource Economics,

Baltas, H., Sirin, M., Dalgic, G., Bayrak, E. Y., & Akdeniz, A. (2017). Assessment of metal concentrations (Cu, Zn, and Pb) in seawater, sediment and biota samples in the coastal area of Eastern Black Sea, Turkey. Marine pollution bulletin, 122(1-2), 475-482.

Bat, L., Bilgin, S., Gündoğdu, A., Akbulut, M., & Çulha, M. (2001). Individual and combined effects of copper and lead on the marine shrimp, Palaemon adspersus Rathke, 1837 (Decapoda: Palaemonidae). Turkish Journal of Marine Sciences, 7, 103–117.

Beiras, R., & Albentosa, M. (2004). Inhibition of embryo development of the commercial bivalves Ruditapes decussatus and Mytilus galloprovincialis by trace metals; implications for the implementation of seawater quality criteria. Aquaculture, 230(1-4), 205-213.

Botté, A., Seguin, C., Nahrgang, J., Zaidi, M., Guery, J., & Leignel, V. (2022). Lead in the marine environment: concentrations and effects on invertebrates. Ecotoxicology,

Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall-Dia, A., Shirali, P., Diouf, A., Fall, M., & Verdin, A. (2015). Effects of environmental cadmium and lead exposure on adults neighboring a discharge: evidences of adverse health effects. Environmental Pollution,

Carocci, A., Catalano, A., Lauria, G., Sinicropi, M. S., & Genchi, G. (2015). Lead Toxicity, Antioxidant Defense, Reviews of Environmental Contamination and Toxicology (pp. 45-67). Springer, Cham. ISBN 978-3-319-30790-9

Castillo, M. A., Trujillo, I. S., Alonso, E. V., de Torres, A. G., & Pavón, J. C. (2013). Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Marine pollution bulletin, 76(1-2), 427-434.

Cevik, U., Damla, N., Kobya, A. I., Bulut, V. N., Duran, C., Dalgıc, G., & Bozacı, R. (2008). Assessment of metal element concentrations in mussel (M. galloprovincialis) in Eastern Black Sea, Turkey. Journal of Hazardous Materials, 160(2-3), 396-401.

Chambers, J. M., & Hastie, T. J. (1992). Linear models. In: Chambers, J. M. And Hastie, T. J. (eds), Statistical Models. Wadsworth & Brooks/Cole Chapter 4. ISBN 978-3-7908-0475-1

Chan, H. M. (1988). Accumulation and tolerance to cadmium, copper, lead and zinc by the green mussel Perna viridis. Marine ecology progress series. Oldendorf, 48(3), 295-303. 48, 295–303.

Chen, L., Wang, X., Zhang, X., Lam, P. K., Guo, Y., Lam, J. C., & Zhou, B. (2017). Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. Environmental Pollution,

Chinni, S., Khan, R. N., & Yallapragada, P. R. (2002). Acute toxicity of lead on tolerance, oxygen consumption, ammonia-n excretion, and metal accumulation in Penaeus indicus postlarvae. Ecotoxicology and Environmental Safety, 51(2), 79–84.

Chishty, N., Tripathi, A., & Sharma, M. (2012). Evaluation of acute toxicity of zinc, lead and cadmium to zooplanktonic community in Upper Berach River system, Rajasthan, India. South Asian Journal of Experimental Biology, 2(1), 20–26.

Cooper, N. L., Bidwell, J. R., & Kumar, A. (2009). Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicology and Environmental Safety, 72(5), 1523–1528.

Da Silva, C. A., Ribeiro, B. M., Do Valle Trotta, C., Perina, F. C, Martins, R., De Souza Abessa, D. M., Barbieri, E., Simões, M. F., & Ottoni, C. A. (2022). Effects of mycogenic silver nanoparticles on organisms of different trophic levels. Chemosphere,

Dastych, H. (1980). Niesporczaki (Tardigrada) Tatrzanskiego Parku Narodowego.(Water bears [Tardigrada] of Tatrzanski National Park.) Monografie Fauny Polski 9. Warsaw: Panstwowe Wydawnictwo Naukowe (pp. 1-232). ISBN 8301012390.

De Melo, C. B., Ca, F., Alves, O. L., Martinez, D. S. T., & Barbieri, E. (2019). Co-exposure of graphene oxide with trace elements: Effects on acute ecotoxicity and routine metabolism in Palaemon pandaliformis (shrimp). Chemosphere.

Deidda, I., Russo, R., Bonaventura, R., Costa, C., Zito, F., & Lampiasi, N. (2021). Neurotoxicity in marine invertebrates: an update. Biology, 10(2), 161.

El-Amier, Y. A., & Abd El-Gawad, A. M. (2016). Assessing the sediment pollution using heavy metals indices in the Nile River Branches in Egypt. Environmental Science and Pollution Research2, 107-112.

Fernández, N., & Beiras, R. (2001). Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology.

Flora, S. J., Flora, G., & Saxena, G. (2006). Environmental occurrence, health effects and management of lead poisoning. In Lead (pp. 158-228). Elsevier Science BV. ISBN 9780444529459.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the american statistical association, 32(200), 675-701.

Gajbhiye, S. N., & Hirota, R. (1990). Toxicity of heavy metals to brine shrimp Artemia. Journal of the Indian Fisheries Association, 20, 43-50

Gholizadeh, M., & Patimar, R. (2018). Ecological risk assessment of heavy metals in surface sediments from the Gorgan Bay, Caspian Sea. Marine pollution bulletin,

Gopalakrishnan, S., Thilagam, H., & Raja, P. V. (2008). Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere, 71(3), 515-528.

Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M. (2000). Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity?. Ecotoxicology and environmental safety, 46(3), 357-362.

Hashimoto, T., Horikawa, D. D., Saito, Y., Kuwahara, H., Kozuka-Hata, H., Shin-i, T., Minakuchi, Y., Ohishi, K., Motoyama, A., Aizu, T., Enotomo, A., Kondo, K., Tanaka, S., Hara, Y., Koshikawa, S., Sagara, H., Miura, T., Yokobori, S., Miyagawa, K., Suzuki, Y., Kubo, T., Oyama, M., Kohara, Y., Fujiyama, A., Arakawa, K., Katayama, T., Toyoda, A., & Kunieda, T. (2016). Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature communications, 7(1), 12808.

Howe, P. L., Reichelt-Brushett, A. J., & Clark, M. W. (2014). Investigating lethal and sublethal effects of the trace metals cadmium, cobalt, lead, nickel and zinc on the anemone Aiptasia pulchella, a cnidarian representative for ecotoxicology in Tropical Marine Environments. Marine and Freshwater Research, 65(6), 551.

Hygum, T. L., Fobian, D., Kamilari, M., Jørgensen, A., Schiøtt, M., Grosell, M., & Møbjerg, N. (2017). Comparative investigation of copper tolerance and identification of putative tolerance related genes in tardigrades. Frontiers in physiology.

Iharos, G. (1937). Hungarian Tardigrades. Mat és Term tud Ért, 56, 982-1040.

Iqubal, A., Ahmed, M., Ahmad, S., Sahoo, C. R., Iqubal, M. K., & Haque, S. E. (2020). Environmental neurotoxic pollutants. Environmental Science and Pollution Research.

Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological indicators,

Iwanaga, S., & Lee, B. L. (2005). Recent advances in the innate immunity of invertebrate animals. BMB reports, 38(2), 128-150.

Kaymak, G., Kayhan, F. E., & Ertuğ, N. D. Y. (2021). A biomonitoring study: Using the biomarkers in Cyprinus carpio for the evaluation of water pollution in Sapanca lake (Sakarya, Turkey). International Journal of Agriculture Environment and Food Sciences, 5(1), 107-121.

Khatik, S. K., Risikesh, T., & Sharma, G. D. (2006). Lead: the heavy metal in soil water and plant environment. Journal of Industrial Pollution Control, 22(2), 233-244.

Kim, H., Lim, B., Kim, B. D., Lee, Y. M. (2016). Effects of heavy metals on transcription and enzyme activity of Na+/K+-ATPase in the monogonont rotifer, Brachionus koreanus. Toxicology and Environmental Health Sciences.

Kim, H., Yim, B., Bae, C., & Lee, Y. M. (2017). Acute toxicity and antioxidant responses in the water flea Daphnia magna to xenobiotics (cadmium, lead, mercury, bisphenol A, and 4-nonylphenol). Toxicology and environmental health sciences,

Kim, J. J., Delisle, K., Brown, T. M., Ross, P. S., Noël, M. (2023). Sediment Spatial Distribution and Quality Assessment of Metals in Chinook Salmon and Resident Killer Whale Marine Habitat in British Columbia, Canada. Archives of Environmental Contamination and Toxicology, 85(1), 73-91.

Kontaş, S., & Bostancı, D. (2020). Genotoxic effects of environmental pollutant heavy metals on Alburnus chalcoides (Pisces: Cyprinidae) inhabiting lower Melet River (Ordu, Turkey). Bulletin of Environmental Contamination and Toxicology, 104, 763-769.

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621.

Li, L., Sun, F., Liu, Q., Zhao, X., & Song, K. (2021). Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China. Ecotoxicology and Environmental Safety, 222, 112479.

Li, R., Tang, X., Guo, W., Lin, L., Zhao, L., Hu, Y., & Liu, M. (2020). Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Science of The Total Environment 714: 136779.

Liu, Z. H., Shang, J., Yan, L., Wei, T., Xiang, L., Wang, H. L., Cheng, J., & Xiao, G. (2020). Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. Chemosphere,

Luckey, T. D. & Venugopal, B. (1979). Metal Toxicity in Mammals: Physiologic and Chemical Basis for Metal Toxicity (Vol. 1). Plenum Press. Springer New York, NY. ISBN 978-1-4684-2954-1.

Maddock, B. G., & Taylor, D. (1980). The acute toxicity and bioaccumulation of some lead alkyl compounds in marine animals. Lead in the Marine Environment, 233–261.

Miao, X., Hao, Y., Tang, X., Xie, Z., Liu, L., Luo, S., Huang, Q., Zou, S., Zhang, C., & Li, J. (2020). Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China. Chemosphere,

Mitra, P., Sharma, S., Purohit, P., & Sharma, P. (2017). Clinical and molecular aspects of lead toxicity: An update. Critical reviews in clinical laboratory sciences, 54(7-8), 506-528.

Nassouhi, D., Ergönül, M. B., Fikirdeşici, Ş., Karacakaya, P., & Atasağun, S. (2018). Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 148-165.

Nelson, D. R., Guidetti, R., Rebecchi, L., Kaczmarek, Ł., & McInnes, S. (2020). Phylum Tardigrada. In Thorp and Covich's Freshwater Invertebrates (pp. 505-522). Academic Press. ISBN: 9780123850263

Nour, H. E., El-Sorogy, A. S., Abd El-Wahab, M., Mohamaden, M., & Al-Kahtany, K. (2019). Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Marine pollution bulletin, 144, 167-172.

Offem, B. O., & Ayotunde, E. O. (2008). Toxicity of lead to freshwater invertebrates (water fleas; Daphnia magna and Cyclop sp.) in fish ponds in a tropical floodplain. Water, Air, and Soil Pollution, 192(1–4), 39–46.

Olatoregun, A. (2021). Investigating the Detoxification of Cadmium by the Tardigrade Hypsibius exemplaris (Doctoral dissertation, Texas Southern University). United States, Texas: Texas Southern University. ISBN 9798460407156.

Paul, V., Sankar, M. S., Vattikuti, S., Dash, P., & Arslan, Z. (2021). Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. Chemosphere, 263, 128243.

Perry, E. M. M. A., Miller, W. R., & Kaczmarek, Ł. (2019). Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa, 4608(1), 398-400.

Rajkumar, H., Naik, P. K., & Rishi, M. S. (2020). A new indexing approach for evaluating heavy metal contamination in groundwater. Chemosphere, 245, 125598.

Rajkumar, J. S., John Milton, M. C., Ulthiralingam, M., Azhaguraj, R., Ganesh, J., & Ambrose, T. (2011). Toxic Effects and Bioaccumulation of Cadmium, Copper, Lead and Zinc in Post Larval Stages of Penaeus monodon. International Journal of Development Research, 1(2), 001–005

Ramakritinan, C. M., Rathishri, C., & Kumaraguru, A. K. (2012). Acute Toxicity of Metals: Cu, Pb, Cd, Hg and Zn on Marine Molluscs, Cerithedia cingulata G., and Modiolus philippinarum H. Indian Journal of Geo-Marine Sciences, 41(2), 141–145.

Rehman, A., Shakoori, F. R., & Shakoori, A. R. (2008). Heavy metals resistant rotifers from a chromium contaminated wastewater can help in environmental clean-up. Pakistan Journal of Zoology, 40(5), 309-316

Ribeiro, L. G., Rezende, K. F. O., Barbieri, E., & De Souza, A. O. (2023). Study of routine metabolism and acute toxicity of mycogenic silver nanoparticles on Palaemon pandaliformis (shrimp). Environmental Science: Nano, 10(6), 1715-1729.

Roig, N., Sierra, J., Nadal, M., Moreno-Garrido, I., Nieto, E., Hampel, M., Gallego, E. P., Schuhmacher, M., & Blasco, J. (2015). Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study. Science of the total environment,

Royston, J. P. (1982). An extension of Shapiro and Wilk's W test for normality to large samples. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(2), 115-124.

Santos, D. B., Barbieri, E., Bondioli, A. C. V., De Melo, C. B. (2014). Effects of Lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O Mundo da Saúde, 38(1), 16-23.

Schill, R. O., & Hengherr, S. (2018). Environmental adaptations: desiccation tolerance. Water bears: The biology of tardigrades. Springer International Publishing,

Scoullos, M., & Botsou, F. (2018). Geochemical processes of trace metals in fresh–saline water interfaces. The cases of Louros and Acheloos estuaries. The Rivers of Greece: Evolution, Current Status and Perspectives, 241-277.

Şener, E., Şener, Ş., & Bulut, C. (2023). Assessment of heavy metal pollution and quality in lake water and sediment by various index methods and GIS: A case study in Beyşehir Lake, Turkey. Marine Pollution Bulletin, 192, 115101.

Stephan, C. E. (1977). Methods for calculating an LC 50. In Aquatic toxicology and hazard evaluation. (pp. 65-84 ). ASTM International, USA. ISBN 978-0-8031-0278-1

Supanopas, P., Sretarugsa, P., Kruatrachue, M., Pokethitiyook, P., & Upatham, E. S. (2005). Acute and subchronic toxicity of lead to the spotted Babylon, Babylonia areolata (Neogastropoda, Buccinidae). Journal of Shellfish Research, 24(1), 91-98.

Tan, İ., & Aslan, E. (2020). Metal pollution status and ecological risk assessment in marine sediments of the inner Izmit Bay. Regional studies in marine science,

Tepe, Y., Şimşek, A., Ustaoğlu, F., & Taş, B. (2022). Spatial–temporal distribution and pollution indices of heavy metals in the Turnasuyu Stream sediment, Turkey. Environmental monitoring and assessment, 194(11), 818.

Traill, L. W., Lim, M. L., Sodhi, N. S., Bradshaw, C. J. (2010). Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology, 79(5), 937-947.

Valkova, E., Atanasov, V., Velichkova, K., Kostadinova, G., & Mihaylova, G. (2016). Content of Pb in water, sediment, aquatic plants and musculature of common carp (Cyprinus carpio L.) from different water bodies in Stara Zagora region, Bulgaria. Bulgarian Journal of Agricultural Science, 22(4).

Van Den Brink, N. W., Kokalj, A. J., Silva, P. V., Lahive, E., Norrfors, K., Baccaro, M., Norrfors, K., Khodaparast, M. C., Loureiro, S., Drobne, D., Cornelis, G., Lofts, S., Handy, R. D., Svendsen, C., Spurgeon, D. Z., & Van Gestel, C. A. M. (2019). Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environmental Science: Nano, 6(7), 1985-2001.

Vargha, B., Otvos, E., & Tuba, Z. (2002). Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears [Tardigrada], as bioindicators. Annals of agricultural and environmental medicine, 9(2), 141-6.

Verriopoulos, G., & Dimas, S. (1988). Combined toxicity of copper, cadmium, zinc, lead, nickel, and Chrome to the Copepod Tisbe holothuriae. Bulletin of Environmental Contamination and Toxicology, 41(3), 378–384.

Wang, Q., Liu, B., Yang, H., Wang, X., & Lin, Z. (2009). Toxicity of lead, cadmium and Mercury on embryogenesis, survival, growth and metamorphosis of Meretrix meretrix larvae. Ecotoxicology, 18(7), 829–837.

Erdmann W., & Łukasz, K. (2017). Tardigrades in space research-past and future. Origins of Life and Evolution of Biospheres.

Yiğiterhan, O., Murray, J. W., & Tuğrul, S. (2011). Trace metal composition of suspended particulate matter in the water column of the Black Sea. Marine Chemistry, 126(1-4), 207-228.

Zhang, J., &Yu, Z. (2020). Transgenerational effects of different sequential exposure to 2, 2′, 4, 4′-tetra-brominated diphenyl ether (BDE47) and lead (Pb) on Caenorhabditis elegans. Environmental Sciences Europe.




How to Cite

Berdi, D., Nassouhi, D., Çiftci, E. ., Güner, B. ., Trampacı, B., Gülsoy, S., & Altındağ, A. (2024). Acute toxicity of lead on the survival of Macrobiotus hufelandi (Eutardigrada: Parachela: Macrobiotidae). Journal of Wildlife and Biodiversity, 8(2), 38–54.