Bacteriocin extraction from bacterial samples and study the effect on the other types of pathogenic bacteria

Authors

  • Hamsa Faisal Najm Al-Bayan University, Department of Dentistry, College of Dentistry, Baghdad, Iraq
  • Shatha Saadallah Al-Bayan University, Department of Dentistry, College of Dentistry, Baghdad, Iraq

DOI:

https://doi.org/10.5281/zenodo.10383959

Keywords:

Bacteriocin, antibacterial activity, Lactobacilli, bacteriocin encoding genes

Abstract

This study investigated the antibacterial activity of a lectin-like bacteriocin extracted from Pseudomonas putida isolated from various soil samples in Baghdad. Thirteen new isolates of P. putida were identified using morphological, physiological, and molecular methods. Real-time PCR identified three isolates carrying the bacteriocin gene. Antibiotic sensitivity was tested on pathogenic bacteria, and one isolate from each species exhibiting broad-spectrum resistance was selected. The crude bacteriocin from 13 isolates showed antimicrobial activity against six pathogenic bacterial species, with five isolates exhibiting inhibition zones. Purification resulted in a bacteriocin with a total protein concentration of ~4669µg/ml and an apparent molecular mass of ≤11 kDa. HPLC confirmed the molecular mass. This study quantified the expression of P. putida bacteriocin genes, characterized as putadicin, with potential applications in human medicine for burn treatment in Iraq.

References

Akkaya, D. Pérez-Pantoja, B., Calles, P.I., Nikel, V., de Lorenzo (2018). The metabolic redox regime of Pseudomonas putida tunes its evolvability towards novel xenobiotic substrates bioRxiv, 9 (5): 923–9

Baharak, k., Reza, M., Gholamali, M., Shiva, M. and Reza, G. (2018). Molecular Genotyping of Acinetobacter baumannii Species Isolated from Patients in Tehran, Iran, by Repetitive Element PCR Finger printing. Iran J Pathol. 13(2): 144-150.

Belda, E., R.G.A. van Heck, M.J. López-Sánchez, S. Cruveiller, V. Barbe, C. Fraser, H.P. Klenk, J. Petersen, A. Morgat, P., I., Nikel, D., Vallenet, Z., Rouy, A., Sekowska, V., A., P., Martins dos Santos, V. de Lorenzo, A. Danchin, C. Médigue (2016) . The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis Environ. Microbiol., 18, pp. 3403-3424

Carpenter, R., J.; Hartzell, J .D.; Forsberg, J. A.; Babel, B .S. and Ganesan,A. (2008).Pseudomonas putida war wound infection in a US marine : A case report and review of the literature .J. Infect.56: 234-240.

Chávez‐Almanza, A. , F., López‐Cervantes, J., Cantú‐Soto, E. U., Sánchez‐Machado, D. I. and Campas‐Baypoli, O. N. (2017). PCR Assay for Detection of Staphylococcus aureus in Fresh Lettuce (Lactuca sativa), Frontiers in Staphylococcus aureus, Dr. Shymaa Enany (Ed.), InTech.

Feil ,H .; Feil ,W ., H., Chain ,P., Larimer, F., DiBartolo, G., Copeland, A. ; Lykidis, A.; Trong, S.; Nolan, M., Goltsman, E., Thiel, J ., Malfatti, S. , Loper, J., E., Lapidus , A., Detter, J.C., Land , M.; Richardson, P. M.; Kyrpides, N.C.; Ivanova , N. and Lindow ,S.E. (2005) .Comparison of the complete genome sequences of Pseudomonas syringae syringe B728a and pv. tomato DC3000. PNAS.102:11064– 11069.

Henry, D., Speert, D. (2011) Pseudomonas. In: Versalovic J, Carroll K, Funke, G., Jorgensen, J., Landry M., Warnock, D., editors. Manual of Clinical Microbiology. 10th ed. Washington DC: ASM press;. p. 677-91.

Janda, J., M., and Abbott, S.L. (2007). 16SrRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses,perils, and pitfalls.J.Clin.Microbiol. (45) :2761-2764.

Kilic-Ekici, O., and Yuen, G. Y. (2003) . Induced resistance as a mechanisms of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93:1103-1110.

Kuepper, J., Ruijssenaars, H., J, Blank, L. M, de Winde, J.H, Wierckx, N. (2015). Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid ptts12. J Biotechnol. 200:17–18

Li, J, Jiang, J. and Leung, F.C. (2012). 10-x pyrosequencing is a practical approach for whole prokaryote genome studies. Gene. (494): 57-64.

Liu W.Y., Chung K.M, Wong C.F, Jiang, J.Wand Hui, R.K. (2012). Complete genome sequence of the endophytic Enterobacter cloacae subsp. cloacae strain ENHKU01. J. Bacteriol., (194): 5965.

Martínez-García E, Aparicio T, de Lorenzo V, Nikel P.I. (2014). New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol. 2:46

Mignard, S. and Flandrois, J.P. (2006). 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Met. (67): 574- 581.

Montazeri, E., A., Khosrava, A., D., Jolodar ,A., Ghaderpanah, M. and Azarpira, S. (2015). Identification of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from burns patients by multiplex PCR.41:590-594.

Nayak , B ., S . , Badgley , B . and Harwood , V . J . (2011). Comparison of genotypic and phylogenetic relationships of environmental Enterococcus isolates by Box-PCR typing and 16SrRNA gene sequencing. Appl .environ. Microbiol. 77(14):5050-5055.

Nelson, K., E., Weinel, C., Paulsen ,I.T, Dodson, R.J, Hilbert, H, Martins dos Santos VAP, Fouts, D. E., Gill, S. R., Pop, M, Holmes, M., Brinkac, L., Beanan, M., deboy, R.T, Daugherty, S., Kolonay , J., Madupu, R, Nelson, W., White, O., Peterson, J, Khouri, H, Hance, I., Lee, P.C, Holtzapple, E., Scanlan D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber J., Stjepandic, D., Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 4:799–808.

Palleroni, N.J. (2008) The road to the taxonomy of Pseudomonas. In Pseudomonas: Genomics and Molecular Biology ed. Cornelis, P. pp. 1–18.

Relman, D., A . (1999). The search for unrecognized pathogens. Sci. 284 Suppl., ( 5418): 1308-1310.

Romilio, T. E. and Nicolás, P. (2018). Multiple Ribosomal RNA Operons in Bacteria; Their Concerted Evolution and Potential Consequences on the Rate of Evolution of Their 16S rRNA. Front. Microbiol. (9): 1232. | DOI:10.3389/fmicb.01232.

Shin, S., H., Kim, S., Kim, J., Y., Lee, S. and Um, Y. (2012). Complete Genome Sequence of Enterobacter aerogenes KCTC 2190. J. Bacteriol. (194): 2373-2374.

Taghavi, S., van der Lelie, D., Hoffman, A., Zhang, Y., B., and Walla, M., D. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter Spp. PLOS Genet. 6(638): e1000943.

Tran, H.; Kruijt, M., and Raaijmakers, J., M. (2008). Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. J. Appl. Microbiol. 104: 839–851.

Vetrovsky,T. and Baldrian, P.(2013). The variability of the 16SrRNA gene in bacterial genomes and its consequences for bacterial community analyses .J. PLos ONE. 8(2):e57923.

William, W., Wilfinger, K., M., and Piotr, C. (1997). Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. Bio. Techol. 22:474-481.

Downloads

Published

2023-11-28

How to Cite

Faisal Najm, H. ., & Saadallah, S. . (2023). Bacteriocin extraction from bacterial samples and study the effect on the other types of pathogenic bacteria. Journal of Wildlife and Biodiversity, 7(Special Issue), 746–771. https://doi.org/10.5281/zenodo.10383959