Histopathological changes result from exposure to Staphylococcus aureus enterotoxin b

Authors

  • Ahmed Farhan Department of Biology, College of Science, University of Anbar, Al Ramadi, Iraq
  • Khadija Hamad Department of Biology, College of Science, University of Anbar, Al Ramadi, Iraq

DOI:

https://doi.org/10.5281/zenodo.10368039

Keywords:

Enterotoxin B(SEB), Staphylococcus aureus, histological changes

Abstract

Staphylococcal enterotoxin B (SEB), a potent inducer of toxic shock syndrome (TSS) and a potential biological threat agent, is known for causing classic food poisoning symptoms, such as fever, vomiting, and diarrhoea. Its superantigenic properties lead to extensive T-cell proliferation and the production of inflammatory cytokines, contributing to the severe effects of SEB. This toxin induces a wide range of histological changes in the liver, lung, and small intestine. This study involved thirty (20) albino rats obtained from the Iraqi Center for Cancer Research and Medical Genetics at Al-Mustansiriya University. These rats were treated with SEB via the intraperitoneal route (ip) and intragastric (ig), while five (5) female albino rats were used as a control. Histological slides revealed a broad spectrum of histopathological changes in the liver and lung caused by SEB toxin. SEB demonstrated the ability to activate a significant fraction of T lymphocytes, leading to a cytokine storm that resulted in substantial damage to internal tissues.

References

Murray, P. R., Rosenthal, K. S., Kobayashi, G. S., & Pfaller, M. A. (1998). Paramyxovirus. Medical Microbiology. 3rd edition. St. Louis: Mosby, 461-71.

Janssen YM, Van Houten B, Borm PJ, Mossman BT. Cell and tissue responses to oxidative damage. Laboratory investigation; a journal of technical methods and pathology. 1993 Sep 1;69(3):261-74.

Madigan, M. T., Martinko, J. M., & Parker, J. (2004). Brock. Biología de los microorganismos.

Tortora, G. J., Case, C. L., Bair III, W. B., Weber, D., & Funke, B. R. (2004). Microbiology: an introduction. (No Title).

Jardetzky, T. S., Brown, J. H., Gorga, J. C., Stern, L. J., Urban, R. G., Chi, Y. I., ... & Wiley, D. C. (1994). Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature, 368(6473), 711-718.

Finegold, M. J. (1967). Interstitial pulmonary edema. An electron microscopic study of the pathology of staphylococcal enterotoxemia in rhesus monkeys. Lab Invest, 16(6), 912-924.

Zhang, P., Yu, J., Gui, Y., Sun, C., & Han, W. (2019). Inhibition of miRNA-222-3p relieves staphylococcal enterotoxin B-induced liver inflammatory injury by upregulating suppressors of cytokine signaling 1. Yonsei medical journal, 60(11), 1093-1102.

Marrack, P. H. I. L. I. P. P. A., Blackman, M., Kushnir, E., & Kappler, J. (1990). The toxicity of staphylococcal enterotoxin B in mice is mediated by T cells. The Journal of experimental medicine, 171(2), 455-464.

Marrack, P., & Kappler, J. (1990). The staphylococcal enterotoxins and their relatives. Science, 248(4956), 705-711.

McKallip, R. J., Do, Y., Fisher, M. T., Robertson, J. L., Nagarkatti, P. S., & Nagarkatti, M. (2002). Role of CD44 in activation‐induced cell death: CD44‐deficient mice exhibit enhanced T cell response to conventional and superantigens. International immunology, 14(9), 1015-1026.

Rajagopalan, G., Sen, M. M., Singh, M., Murali, N. S., Nath, K. A., Iijima, K., ... & David, C. S. (2006). Intranasal exposure to staphylococcal enterotoxin B elicits an acute systemic inflammatory response. Shock, 25(6), 647-656.

Hayworth, J. L., Mazzuca, D. M., Vareki, S. M., Welch, I., McCormick, J. K., & Haeryfar, S. M. (2012). CD1d‐independent activation of mouse and human iNKT cells by bacterial superantigens. Immunology and cell biology, 90(7), 699-709.

Schramm, R., & Thorlacius, H. (2003). Staphylococcal enterotoxin B-induced acute inflammation is inhibited by dexamethasone: important role of CXC chemokines KC and macrophage inflammatory protein 2. Infection and immunity, 71(5), 2542-2547.

Strandberg KL, Rotschafer JH, Vetter SM, Buonpane RA, Kranz DM, Schlievert PM. Staphylococcal superantigens cause lethal pulmonary disease in rabbits. The Journal of infectious diseases. 2010 Dec 1;202(11):1690-7.

McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, Nagarkatti M. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. Journal of Biological Chemistry. 2003 Oct 31;278(44):43818-30.

Uchakina ON, Castillejo CM, Bridges CC, McKallip RJ. The role of hyaluronic acid in SEB-induced acute lung inflammation. Clinical Immunology. 2013 Jan 1;146(1):56-69.

McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins. 2013 Oct 17;5(10):1814-26.

Johnson HM, Torres BA, Soos JM. Superantigens: structure and relevance to human disease. Proceedings of the Society for Experimental Biology and Medicine. 1996 Jun;212(2):99-109.

Schantz, E. J., Roessler, W. G., Wagman, J., Spero, L., Dunnery, D. A., & Bergdoll, M. S. (1965). Purification of staphylococcal enterotoxin B. Biochemistry, 4(6), 1011-1016.

Shimada, M., Cheng, J., & Sanyal, A. (2014). Fatty liver, NASH, and alcoholic liver disease.

Yang, Z. (Ed.). (2015). Chinese burn surgery. Springer.

Schümann, J., Wolf, D., Pahl, A., Brune, K., Papadopoulos, T., van Rooijen, N., & Tiegs, G. (2000). Importance of Kupffer cells for T-cell-dependent liver injury in mice. The American journal of pathology, 157(5), 1671-1683..

Purwanasari, H. N., Permatasari, A. T. U., Lestari, F. B., Wasissa, M., Zaini, K., & Salasia, S. I. O. (2022). Cellular immune response of Staphylococcus aureus enterotoxin B in Balb/c mice through intranasal infection. Veterinary World, 15(7), 1765.

Tessier, P. A., Naccache, P. H., Diener, K. R., Gladue, R. P., Neote, K. S., Clark-Lewis, I., & McColl, S. R. (1998). Induction of acute inflammation in vivo by staphylococcal superantigens. II. Critical role for chemokines, ICAM-1, and TNF-α. The Journal of Immunology, 161(3), 1204-1211.

Del Campo, J. A., Gallego, P., & Grande, L. (2018). Role of inflammatory response in liver diseases: Therapeutic strategies. World journal of hepatology, 10(1), 1.

Tilg, H., & Moschen, A. R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 52(5), 1836-1846.

Minehira, K., Young, S. G., Villanueva, C. J., Yetukuri, L., Oresic, M., Hellerstein, M. K., ... & Tappy, L. (2008). Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. Journal of lipid research, 49(9), 2038-2044.

Peter, J., Frey, O., Stallmach, A., & Bruns, T. (2013). Attenuated antigen-specific T cell responses in cirrhosis are accompanied by elevated serum interleukin-10 levels and down-regulation of HLA-DR on monocytes. BMC gastroenterology, 13, 1-10.

Del Campo, J. A., Gallego, P., & Grande, L. (2018). Role of inflammatory response in liver diseases: Therapeutic strategies. World journal of hepatology, 10(1), 1.

Shinbori, T., Matsuki, M., Suga, M., Kakimoto, K., & Ando, M. (1996). Induction of interstitial pneumonia in autoimmune mice by intratracheal administration of superantigen staphylococcal enterotoxin B. Cellular immunology, 174(2), 129-137.

Alghetaa, H., Mohammed, A., Zhou, J., Singh, N., Nagarkatti, M., & Nagarkatti, P. (2021). Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacological research, 167, 105548.

Sultan, M., Alghetaa, H., Mohammed, A., Abdulla, O. A., Wisniewski, P. J., Singh, N., ... & Nagarkatti, M. (2021). The endocannabinoid anandamide attenuates acute respiratory distress syndrome by downregulating miRNA that target inflammatory pathways. Frontiers in Pharmacology, 12, 644281.

Wells, J. M., Iyer, A. S., Rahaghi, F. N., Bhatt, S. P., Gupta, H., Denney, T. S., ... & Dransfield, M. T. (2015). Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease. Circulation: Cardiovascular Imaging, 8(4), e002546.

Onai, H., & Kudo, S. (2001). Suppression of superantigen‐induced lung injury and vasculitis by preadministration of human urinary trypsin inhibitor. European journal of clinical investigation, 31(3), 272-280.

Wilson, M. S., & Wynn, T. A. (2009). Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal immunology, 2(2), 103-121.

Krakauer, T., Buckley, M. J., Huzella, L. M., & Alves, D. A. (2009). Critical timing, location and duration of glucocorticoid administration rescue mice from superantigen-induced shock and attenuate lung injury. International immunopharmacology, 9(10), 1168-1174.

Downloads

Published

2023-11-28

How to Cite

Farhan, A. ., & Hamad, K. . (2023). Histopathological changes result from exposure to Staphylococcus aureus enterotoxin b. Journal of Wildlife and Biodiversity, 7(Special Issue), 730–745. https://doi.org/10.5281/zenodo.10368039