Antibiotic resistance in Enterobacter cloacae from Anbar hospitals
DOI:
https://doi.org/10.5281/zenodo.10367341Keywords:
Enterobacter cloacae complex, hospital-acquired infections, OMPsAbstract
This study aimed for isolation and Identification of the E. cloacae from clinical sources. The results showed that fifteen isolates out of 150 samples were all E.cloacae identified by morphological, microscopic, and biochemical tests and confirmed by Vitek II system. These results showed a correlation between OMPs (OmpA, OmpX, OmpF, Ompc) and antibiotic resistance in ECC clinical isolates. The OmpX gene was present in each isolate, while 12 isolates were positive for the OmpA gene, and ten isolates were positive for the OmpF, and OmpC genes. The isolates were β- lactam; cephalosporin resistance exhibited resistance to Cefoxitin, Ceftazidime, Cefazolin, Ceftriaxone, Cefepime, meropenem, Amoxicillin/clavulanic, Ertapenem, and Imipenem tested antibiotics accordingly could be categorized as MDR, These findings suggested the possible establishment of multi-drug resistance Enterobacter bacteria in clinical settings.
References
Arabi, H., et al. (2015). Sulfonamide resistance genes (sul) M in extended-spectrum beta-lactamase (ESBL) and non-ESBL-producing Escherichia coli isolated from Iranian hospitals. Jundishapur Journal of Microbiology 8(7).
Bayramoglu, Z. (2020). Evolution of microbial ecology: A rare multidrug-resistant (Enterobacter cloacae) surgical wound infection after cesarean delivery: Our experience of 5946 cesarean deliveries.
Tindall, B. J., (2007). Phenotypic characterization and the principles of comparative systematics. Methods for general and molecular microbiology: 330-393.
Cai, Y., Chen, C., Zhao, M., Yu, X., Lan, K., Liao, K., ... & Huang, B. (2019). High prevalence of metallo-β-lactamase-producing Enterobacter cloacae from three tertiary hospitals in China. Frontiers in microbiology, 10, 1610.3.
Chang, C.-Y., et al. (2022). The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Ent erobacter cloacae Complex in Taiwan." Antibiotics 11(9): 115.
Conlan, S., Thomas, P. J., Deming, C., Park, M., Lau, A. F., Dekker, J. P., ... & Segre, J. A. (2014). Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Science translational medicine, 6(254), 254ra126-254ra126.
Dalben, M., Varkulja, G., Basso, M., Krebs, V. L. J., Gibelli, M. A., Van der Heijden, I., ... & Costa, S. F. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7-14.
Davin-Regli, A., et al. (2019). Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance." Clinical icrobiology reviews 32(4): e00002-00019.
Esteban-Cuesta, I., et al. (2019). Antimicrobial resistance of Enterobacter cloacae complex isolates from the surface of muskmelons. International journal of food microbiology 301: 19-26.
Fritsche, T.R.; Swoboda, S.E.; Olson, B.J.; Moore, F.M.; Meece, J.K. and Novicki, T.J. (2011) . Evaluation of The Sensititre ARIS2x and Vitek 2 Automated Systems for Identification of Bacterial Pathogens Recovered from Veterinary Specimens. Marshfield labs. LACROSSE. University of Wisconsin. The pathogen in critical care. Critical care nurse, 28(1), 15-25.
Hariharan, P., et al. (2015). Antibiotic susceptibility pattern of Enterobacteriaceae and non-fermenter Gram-negative clinical isolates of microbial resource orchid. Journal of natural science, biology, and medicine 6(1): 198.
Hemraj, V.; Diksha, S. and Avneet, G. (2013). A Review on Commonly Used Biochemical Test for Bacteria. IJLS. 1(1): 1-7.
Liu, S., et al. (2021). Characterization of resistance mechanisms of Enterobacter cloacae Complex coresistant to carbapenem and colistin. BMC Microbiology 21(1): 1-10.
Liu, S., et al. (2021). "Characterization of resistance mechanisms of Enterobacter cloacae Complex coresistant to carbapenem and colistin. BMC Microbiology 21(1): 1-10.
Majewski, P., et al. (2016). "Altered outer membrane transcriptome balance with AmpC overexpression in carbapenem-resistant Enterobacter cloacae. Frontiers in Microbiology 7: 2054.
Masi, M., Winterhalter, M., & Pagès, J. M. (2019). Outer membrane porins. Bacterial cell walls and membranes, 79-123.
Mezzatesta, M. L., Gona, F., & Stefani, S. (2012). Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future microbiology, 7(7), 887-902.
Mishra, M., et al. (2020). Antibiotic resistance profile, outer membrane proteins, virulence factors and genome sequence analysis reveal clinical isolates of Enterobacter are potential pathogens compared to environmental isolates. Frontiers in cellular and infection microbiology 10: 54.
Mishra, M., et al. (2020). Antibiotic resistance profile, outer membrane proteins, virulence factors and genome sequence analysis reveal clinical isolates of Enterobacter are potential pathogens compared to environmental isolates. Frontiers in cellular and infection microbiology 10: 54.
Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens, 481-511.
Pompilio, A., Scribano, D., Sarshar, M., Di Bonaventura, G., Palamara, A. T., & Ambrosi, C. (2021). Gram-negative bacteria holding together in a biofilm: the Acinetobacter baumannii way. Microorganisms, 9(7), 1353.
Pot, M., et al. (2021). Wide distribution and specific resistance pattern to third-generation cephalosporins of Enterobacter cloacae complex members in humans and the environment in Guadeloupe (French West Indies). Frontiers in Microbiology: 1701.
van Eijk, E., Wittekoek, B., Kuijper, E. J., & Smits, W. K. (2017). DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 72(5), 1275-1284.
Wilson, B. M., et al. (2017). Carbapenem-resistant Enterobacter cloacae in patients from the US Veterans Health Administration, 2006–2015. Emerging infectious diseases 23(5): 878.