Synthesis, characterization and Antifibrinolytic activity of Carboxylated Polyvinylpyrrolidone conjugation with Tranexamic acid

Authors

  • Laith Ali Abdullah Ministry of Health, Dhi Qar Health Department, Almoosawi Hospital, Dhi Qar, Iraq
  • Raheem Jameel Mahesein Department of Pharmaceutical Chemistry, College of Pharmacy - University of Basra, Basra, Iraq

DOI:

https://doi.org/10.5281/zenodo.10270753

Keywords:

Biologically Active Components, Polymer Conjugation, Vitro Clot Lysis

Abstract

Polymer conjugation with biologically active components has become a very attractive system as it could improve the efficacy of some drugs. this study aimed to prepare and formulate a topical polymer conjugate with a biologically active component for the treatment of bleeding using tranexamic acid as a drug model. this polymer conjugate leads to the release of the drug in a sustained manner in order to prolong the contact time of the drug with broken skin for the best antifibrinolytic activity. The polymeric matrix involved carboxylated Polyvinylpyrrolidone. Therefore, carboxylated polyvinylpyrrolidone was modified by amide bonding with tranexamic acid (P1), complexing of the resultant product with iodine (P2), synthesis of ether tranexamic acid (P3), synthesis of methylol tranexamic acid (P4), and esterification of methylol tranexamic acid (P5). These polymers were modified to improve their properties and to control the drug release. The FTIR and DSC spectroscopies and 1HNMR spectroscopies were used to determine the drug content of these derivatives. Thus, we aimed to study the antifibrinolytic activity of all compounds (P1–P5) evaluated at various concentrations using in vitro clot lysis assays in human plasma. When employed in high doses, the antifibrinolytic activity of compound P5 exhibits a higher level of antifibrinolytic activity compared to that of pure tranexamic acid.

References

Al-uobody, R. M. K., Mheesn, R. J., & Jassim, H. A. (2020). INTERNATIONAL JOURNAL OF RESEARCH IN Synthesize and Characterization of New Polydimethylsiloxane. 11(1), 717–724.

Ali, M., Hassan, A., Shah, S., Rashid, A., Naguib, A., Ali, M., Hassan, A., Shah, S., Rashid, A., & Naguib, A. (2022). The Effect of Tranexamic Acid on the Outcome of Total Ankle Replacement. Cureus, 14(7). https://doi.org/10.7759/CUREUS.26706

Asatullayev, A. ., & Jabborova, O. . (2022). Bleeding and its types, organization of emergency assistance in bleeding. European Journal of Life Safety and Stability (2660-9630), 13, 111–116.

Awasthi, R., Manchanda, S., Das, P., Velu, V., Malipeddi, H., Pabreja, K., Pinto, T. D. J. A., Gupta, G., & Dua, K. (2018). Poly(vinylpyrrolidone). Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol, 255–272. https://doi.org/10.1016/B978-0-08-101750-0.00009-X

Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Fašmon Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Brantom, P., Svensson, K., … Innocenti, M. L. (2022). Safety and efficacy of a feed additive consisting of carrageenan for pets and other non‐food‐producing animals (Marinalg International). EFSA Journal, 20(4), 7285. https://doi.org/10.2903/J.EFSA.2022.7285

Bosch-Sanz, O., Rabadà, Y., Biarnés, X., Pedreño, J., Caveda, L., Balcells, M., Martorell, J., & Sánchez-García, D. (2022). 1,2,3-Triazole Derivatives as Novel Antifibrinolytic Drugs. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/IJMS232314942

Chun, M. K., Bhusal, P., & Choi, H. K. (2013). Application of Carbopol/PVP interpolymer complex to prepare mucoadhesive floating granule. Archives of Pharmacal Research, 36(6), 745–751. https://doi.org/10.1007/S12272-013-0035-4/METRICS

Drselen, L., Dauner, M., Hierlemann, H., Planck, H., Claes, L. E., & Ignatius, A. (2001). Resorbable polymer fibers for ligament augmentation. Journal of Biomedical Materials Research, 58(6), 666–672. https://doi.org/10.1002/jbm.1067

Gharibjanian, N. A., Chua, W. C., Dhar, S., Scholz, T., Shibuya, T. Y., Evans, G. R. D., & Calvert, J. W. (2009). Release kinetics of polymer-bound bone morphogenetic protein-2 and its effects on the osteogenic expression of MC3T3-E1 osteoprecursor cells. Plastic and Reconstructive Surgery, 123(4), 1169–1177. https://doi.org/10.1097/PRS.0B013E31819F2987

Giuliano, E., Paolino, D., Fresta, M., & Cosco, D. (2018). Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018, Vol. 10, Page 159, 10(3), 159. https://doi.org/10.3390/PHARMACEUTICS10030159

Gomes, M. E., & Reis, R. L. (2013). Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties. Http://Dx.Doi.Org/10.1179/095066004225021918, 49(5), 261–273. https://doi.org/10.1179/095066004225021918

Haaf, F., Sanner, A., & Straub, F. (1985). Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polymer Journal 1985 17:1, 17(1), 143–152. https://doi.org/10.1295/polymj.17.143

Huang, F., Wu, D., Ma, G., Yin, Z., & Wang, Q. (2014). The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis. Journal of Surgical Research, 186(1), 318–327. https://doi.org/10.1016/J.JSS.2013.08.020

Jagur-Grodzinski, J. (2006). Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies, 17(6), 395–418. https://doi.org/10.1002/PAT.729

Jenkins, L. B., Kredel, F. E., & McCord, W. M. (1956). Evaluation of Polyvinyl Pyrrolidone as a Plasma Expander. A.M.A. Archives of Surgery, 72(4), 612–617. https://doi.org/10.1001/ARCHSURG.1956.01270220060007

Kim, C., Park, S. S. H., & Roderick Davey, J. (2015). Tranexamic acid for the prevention and management of orthopedic surgical hemorrhage: Current evidence. Journal of Blood Medicine, 6, 239–244. https://doi.org/10.2147/JBM.S61915

Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 44(41), 17883–17905. https://doi.org/10.1039/C5DT02964C

Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136, 109919. https://doi.org/10.1016/J.EURPOLYMJ.2020.109919

Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60, 102046. https://doi.org/10.1016/J.JDDST.2020.102046

Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0

Myles, P. S., Smith, J. A., Forbes, A., Silbert, B., Jayarajah, M., Painter, T., Cooper, D. J., Marasco, S., McNeil, J., Bussières, J. S., McGuinness, S., Byrne, K., Chan, M. T. V., Landoni, G., & Wallace, S. (2017). Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery. New England Journal of Medicine, 376(2), 136–148. https://doi.org/10.1056/NEJMOA1606424/SUPPL_FILE/NEJMOA1606424_DISCLOSURES.PDF

Plawinski, L., Cras, A., Hernández Lopez, J. R., de la Peña, A., Van der Heyden, A., Belle, C., Toti, F., & Anglés-Cano, E. (2023). Distinguishing Plasmin-Generating Microvesicles: Tiny Messengers Involved in Fibrinolysis and Proteolysis. International Journal of Molecular Sciences 2023, Vol. 24, Page 1571, 24(2), 1571. https://doi.org/10.3390/IJMS24021571

Rac, V., Lević, S., Balanč, B., Olalde Graells, B., & Bijelić, G. (2019). PVA Cryogel as model hydrogel for iontophoretic transdermal drug delivery investigations. Comparison with PAA/PVA and PAA/PVP interpenetrating networks. Colloids and Surfaces B: Biointerfaces, 180, 441–448. https://doi.org/10.1016/J.COLSURFB.2019.05.017

Sizílio, R. H., Galvão, J. G., Trindade, G. G. G., Pina, L. T. S., Andrade, L. N., Gonsalves, J. K. M. C., Lira, A. A. M., Chaud, M. V., Alves, T. F. R., Arguelho, M. L. P. M., & Nunes, R. S. (2018). Chitosan/pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis. Carbohydrate Polymers, 190, 339–345. https://doi.org/10.1016/J.CARBPOL.2018.02.079

Suksaeree, J., Siripornpinyo, P., Chaiprasit, S., & Neau, S. H. (2017). Formulation, characterization, and in vitro evaluation of transdermal patches for inhibiting crystallization of mefenamic acid‏. Downloads.Hindawi.Com‏. https://doi.org/10.1155/2017/7358042

Teodorescu, M., Bercea, M., & Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1), 109–131. https://doi.org/10.1016/J.BIOTECHADV.2018.11.008

Published

2023-12-06

How to Cite

Ali Abdullah, L. ., & Jameel Mahesein, R. . (2023). Synthesis, characterization and Antifibrinolytic activity of Carboxylated Polyvinylpyrrolidone conjugation with Tranexamic acid . Journal of Wildlife and Biodiversity, 7(Special Issue), 628–650. https://doi.org/10.5281/zenodo.10270753