Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes


  • Taghi Ghassemi-Khademi Iranian academic center for education, culture and research (ACECR), Ardabil, Iran




Antilopinae, phylogeny, mtDNA, biosystematics, taxonomy


In this research, phylogenetic relationships of 24 species from the subfamily Antilopinae were evaluated using complete mitochondrial genomes. The average base composition of mtDNA sequences was 27.8% T, 25.2% C, 33.7% A, and 13.3% G, showing a strong AT bias (61.5%). The phylogenetic trees were investigated using the NJ, ME, and UPGMA methods and found that they have very identical topologies. Overall, consistent with the findings of previous studies, the results revealed that the Antilopini tribe has been correctly demarcated. Also, it was found that the Oreotragini tribe, which is represented by a single species (Oreotragus oreotragus), is completely separated from the Antilopini tribe and thus its taxonomic position must be reviewed again. In general, the results of this study indicated that the complete mitochondrial genomes are very useful, powerful, and accurate tools for evaluating the phylogenetic relationships of animals and biosystematics studies. Besides, using these genomes, we can meticulously reconstruct and modify animal classification.


Agnarsson I., May-Collado L.J. 2008. The phylogeny of Cetartiodactyla: The importance oof dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution 48: 964–985.

Bärmann E.V., Rössner G.F., Wörheide G. 2013. A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 67(2): 484-493.

Castelló J.R. 2016. Bovids of the world: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives. Princeton, New Jersey, Princeton University Press 664 pp.

Decker J.E. et al. 2009. Resolving the evolution of extant and extinct ruminants with high-through put phylogenomics. Proceedings of the National Academy of Sciences (PNAS) 106:18644–18649.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Ghassemi-Khademi T. 2014. Iranian gazelles. Journal of Middle East Applied Science and Technology (JMEAST) 13(3): 385-390.

Ghassemi-khademi M., Ghassemi-Khademi T., Javadi S.S., Ghassemi-Khademi A. 2013. The extincted gazelle of Moghan plain and feasibility of revival of this species on taht region. International conference on environmental planning and management (ICEPM), Tehran University, Tehran, Iran.

Gatesy J., Amato G., Vrba E.S., Schaller G.B., DeSalle R. 1997. A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Molecular Phylogenetics and Evolution 7: 303–319.

Groves C.P. 2000. Phylogenetic relawithin recent Antilopini (Bovidae). In: Vrba, ES., Schaller, George B. (Eds.), Antelopes, Deer, and Relatives: Fossil Record, Behavioral Ecology, Systematics, and Conservation. New Haven and London, Yale University Press 223–233.

Hassanin A., Douzery E.J.P. 1999. The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Molecular Phylogenetics and Evolution 13: 227-282.

Hassanin A., Delsuc F., Ropiquet A., Hammer C., Jansen-van-vuuren B., Matthee C., Ruiz-Garcia M., Catzeflis F., Areskoug V., Nguyen T.T., Couloux A. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biologies 335: 32–50.

Katouzian A., Rajabi-Maham H. 2013. Evaluation of effectiveness of some mitochondrial genes in biosystematics and phylogeographic studies of house mouse (Mus musculus) subspecies. Progress in Biological Sciences 3(2): 39-66.

Kimura M. 1980. A simple method for estimating evolutionary rate se substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Kuznetsova M.V., Kholodova M.V. 2003. Revision of phylogenetic relationships in the Antilopinae subfamily on the basis of the mitochondrial rRNA and b-spectrin nuclear gene sequences. Doklady Biological Sciences 391: 333–336.

Lei R., Jiang Z., Hu Z., Yang W. 2003. Phylogenetic relationships of Chinese antelopes (subfamily Antilopinae) based on mitochondrial ribosomal RNA genesequences. Journal of Zoology 261: 227–237.

Manuel H., Ferna N., Elisabeth S. 2005. A complete estimate of the phylogenetic relationships in Ruminantia: A dated species level supertree of the extant ruminants. Biological Reviews 269–302.

Malcolm C., McKenna S., Bell K. 1997. Classification of Mammals: Above the species level. Columbia, Columbia University Press, 640 pp.

Marcot J.D. 2007. Molecular phylogeny of terrestrial artiodactyls. In: Prothero, DR., Foss, SE. (Eds.), The Evolution of Artiodactyls. Baltimore, Johns Hopkins University Press.

Matthee C.A., Davis S.K. 2001. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Molecular Biology and Evolution 18: 1220–1230.

Rzhetsky A., Nei M. 1992. A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9: 945-967.

Rebholz W., Harley E. 1999. Phylogenetic relationships in the bovid subfamily Antilopinae based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 12: 87–94.

Ropiquet A., Li B., Hassanin A. 2009. SuperTRI: A new approach based on branch support analyses of multiple independent data sets for assessing reliability of phylogenetic inferences. Comptes Rendus Biologies 332: 832–847.

Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

Sheikhjabbari H. 2003. Exploring the possibility of semi-natural breeding and rehabilition of the Dasht-e-Moghan Iranian gazelle (G. benetti) and re-estabilishment of the species in the natural habitat. Management and Planning Organization of Ardebil, No. 342 (in Persian).

Sneath P.H.A., Sokal R.R. 1973. Numerical Taxonomy. Freeman, San Francisco 573p.

Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis, Molecular Biology and Evolution 30: 2725-2729.

Wronski T., Wacher T., Hammond R.L., Winney B., Hundertmark J.K., Blacket M.J., Mohammed O.B., Flores B., Omer S.A., Macasero W., Plath M., Tiedemann R., Bleidorn C. 2010. Two reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of mountain Gazelles. Systematics and Biodiversity 8:119–129.

Wilson D.E., Reeder D.M. Antilopinae, in Mammal Species of the World. A taxonomic and geographic reference. 2005. Johns Hopkins University Press, 3ª ed.

Win N.Z., Hoi E.Y., Park J., Park J.K. 2017. Molecular phylogenetic relationship of the

Subfamily Nymphalinae (Lepidoptera: Nymphalidae) in Myanmar, inferred from mtDNA gene sequences. Journal of Asia-Pacific Biodiversity 10: 86-90.

Zhang W.Q., Zhang M.H. 2013. Complete mitochondrial genomes reveal the phylogeny relationship and evolutionary history of the family Felidae. Genetics and Molecular Research 12(3): 3256-3262.




How to Cite

Ghassemi-Khademi, T. . (2017). Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes. Journal of Wildlife and Biodiversity, 1(1), 1–11. https://doi.org/10.22120/jwb.2017.26903