Climate niche modeling of Scorpio kruglovi (Scorpiones: Scorpionidae) in Iran

Authors

  • Taghi Ghassemi-Khademi Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
  • Rasoul Khosravi Department of Natural Resources and Environment Engineering, School of Agriculture, Shiraz University, Shiraz, Iran
  • Asif Sajjad Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

DOI:

https://doi.org/10.22120/jwb.2021.538276.1254

Keywords:

Climate variables, Climate niche modeling, Habitat suitability, Iran, Scorpio kruglovi

Abstract

Species distribution models (SDMs) are one of the most effective tools that determine the factors responsible for shaping the genetic structure of different taxa. These algorithms integrate the presence points and environmental predictors to estimate the probability of species occurrence across geographical areas. In the present study, we predicted the climate niche of Scorpio kruglovi (Scorpiones: Scorpionidae) in Iran using eight uncorrelated bioclimatic variables and occurrence localities. This species was long considered a subspecies of S. maurus but later in 2015, it was recognized as a distinct species. The area under curve (AUC) value of 0.975 indicated the excellent discriminative performance of the MaxEnt algorithm. The precipitation seasonality, minimum temperature of the coldest month, and precipitation of the coldest quarter had the highest percentage of contribution (63.3%) in building the model. The response curves suggested that S. kruglovi prefers the parts of Iran having 64-79% precipitation seasonality, 110-130 mm precipitation of the coldest quarter, and -7 to -13 0C minimum temperature of the coldest month. The southern half of the country was predicted as unsuitable habitats for the species occurrence. Our findings confirmed two geographically distinct suitable habitat patches in the northeast and northwest of Iran. Combining the obtained climate niche map with future genetic data is an effective approach for determining the boundaries of spatial patterns of intraspecific genetic variation.

References

Amr, Z. S. & El‐Oran, R. (1994) Systematics and distribution of scorpions (Arachnida, Scorpionida) in Jordan. Bolletino di Zoologia, 6(2), 185–190.

Asslan faal, S., Shayestehfar, A., Latifi, A. & Ghassemi Khademi, T. (2015) Morphological parameters of scorpions inhabiting Ardabil province in the northwest of Iran. International Journal of Current Research and Academic Review, 3(2), 167–172.

Barahoei, H., Navidpour, S., Aliabadian, M., Siahsarvie, R., & Mirshamsi, O. (2020). Scorpions of Iran (Arachnida: Scorpiones): An annotated checklist, DELTA database and identification key. Journal of Insect Biodiversity and Systematics, 6(4), 375-474.

Bulluck, L., Fleishman, E., Betrus, C. & Blair, R. (2006). Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models. Global Ecology and Biogeography, 15(1), 27-38.

Cao, Z., Di, Z., Wu, Y. & Li, W. (2014). Overview of scorpion species from China and their toxins. Toxins, 6(3), 796-815.

DeLeo, J. M. (1993, April). Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis (pp. 318–325). IEEE.

Dunlop, J. A. & Selden, P.A. (2013). Scorpion fragments from the silurian of powys,Wales. Journal of Arachnology, 16, 27–32.

El-Hennawy, H. K. (1992). A catalog of the scorpions described from the Arab countries (1758-1990) (Arachnida: Scorpionida). Serket, 2(4), 95–153.

El Hidan, M. A., Touloun, O. & Boumezzough, A. (2017). Spatial relationship between environmental factors and scorpion distribution in Morocco. Journal of Entomology and Zoology Studies, 5(3), 674-678.

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. & Zimmermann, N.E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151.

Fet, V. & Lowe, G. (2000) Family Buthidae C.L. Koch, 1837. In: Fet, V., Sissom, W.D., Lowe, G., & Braunwalder, M. E. (eds.) Catalog of the Scorpions of the World (1758-1998). New York Entomological Society, New York, pp. 54–286.

Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315.

Ghorbani, M. (2013) Nature of Iran and its climate, In: The Economic Geology of Iran. Springer, 1-44.

Ghassemi-Khademi, T. (2014). Iranian gazelles. Journal of Middle East Applied Science and Technology (JMEAST), 13(3), 385-390.

Ghassemi-Khademi, T., Khosravi, R., Sadeghi, S. & Ebrahimi, M. (2021a). Historical, current, and future climate niche of the red dwarf honey bee across its native range. Journal of Apicultural Research, 1-13.

Ghassemi-Khademi, T., Khosravi, R., Sadeghi, S., & Kandemir, I. (2021b). Assessment of connectivity between core habitats of the red dwarf honey bees in Iran based on climate and environmental niche modeling. Journal of Apicultural Research, 1-13.

Gibson, L., Barrett, B. & Burbidge, A. (2007). Dealing with uncertain absences in habitat modelling: a case study of a rare ground‐dwelling parrot. Diversity and Distributions, 13(6), 704-713.

Guisan, A. & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.

Habibi, T. (1971) Liste de scorpions de l′Iran. Bulletin of the Faculty of Science of Teheran University, 2(4), 24–31 (in Persian) & 42–47 (in French).

Haghani, A., Khoobdel, M., Dehghani, R., Adibzadeh, A., Sobati, H. & Aliabadian, M. (2020). Ecological modeling and distribution analysis of digger scorpions: Odontobuthus doriae, Odonthubutus bidentatus (Scorpiones: Buthidae) and Scorpio maurus (Scorpiones: Scorpionidae) in Iran using the maximum entropy method. Applied Entomology and Zoology, 55(1), 17-24.

Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. (2002). Ecological‐niche factor analysis: how to compute habitat‐suitability maps without absence data?. Ecology, 83(7), 2027-2036.

Hosseinzadeh, M. S. (2020). Potential distribution and effects of climate change on the risk of scorpion sting with endemic and medically important scorpion Odontobuthus doriae Thorell, 1876 (Arachnida: Scorpionidae: Buthidae) In Iran. Zoology and Ecology, 30(1), 109-115.

Jalali, A. & Rahim, F. (2014). Epidemiological review of scorpion envenomation in Iran. Iranian Journal of Pharmaceutical Research, 13, 743–756.

Kafash, A., Ashrafi, S., Ohler, A., Yousefi, M., Malakoutikhah, S., Koehler, G. & Schmidt, B. R. (2018). Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Global Ecology and Conservation, 16, e00471.

Karataş, A., Moradi-Gharkheloo, M. & Ucak, M. (2012) Contribution to the distribution of the scorpions of Iran. Zoology in the Middle East, 55, 111–120.

Kazemi, S. M., Hosseinzadeh, M. S. & Çicek, K. (2021). The use of ecological niche modeling to infer envenomation risk of Apistobuthus susanae Lourenço, 1998 (Arachnida: Scorpiones) in Southern Iran. Biharean Biologist, 15, 1-5.

Khalaf, L. (1962). A small collection of scorpions from Iraq. Bulletin of the Iraq Natural History Institute, 2(4), 1–3.

Koch, L.E. (1981). The scorpions of Australia: aspects of their ecology and zoogeography. Ecological biogeography of Australia, 41(2), 875-884.

Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.

Marx, M. & Quillfeldt, P. (2018). Species distribution models of European Turtle Doves in Germany are more reliable with presence only rather than presence-absence data. Scientific reports, 8(1), 16898.

Mirshamsi, O. (2013). Ecological niche modeling of two scorpion species Mesobuthus eupeus (CL Koch, 1839) and M. phillipsii (Pocock, 1889) from the Iranian Plateau and Zagros region (Arachnida: Scorpiones). Euscorpius, 2013(154), 1-10.

Mohammad, M. K., Afrasiab, S. R. & Al-Zubaidi, A. A. (2017). Survey for cave animals of Iraqi Kurdistan. Journal of Biodiversity and Environmental Sciences, 10(5), 217–232.

Moreno-Amat, E., Mateo, R. G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J. C. & García-Amorena, I. (2015). Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling, 312, 308-317.

Nasrabadi, R., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Kami, H.G., Gharzi, A. & Yousefkhani, S.S. (2018). Distribution and environmental suitability of the European glass lizard Pseudopus apodus (Pallas, 1775) in the Iranian plateau. Russian Journal of Herpetology, 25(1), 6-10.

Navidpour, S., Kovařík, F., Soleglad, M.E. & Fet, V. (2019). Scorpions of Iran (Arachnida, Scorpiones). Part X. Alborz, Markazi, and Tehran provinces with a description of Orthochirus carinatus sp. n. (Buthidae). Euscorpius, 276, 1–20.

Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venomcomponents as potential candidates for drug development. Toxicon, 93, 125–135.

Petricevich, V. L. (2010). Scorpion venom and the inflammatory response. Mediators of inflammation.

Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modeling, 190(3-4), 231-259.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M.E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887-893.

Prendini, L. & Wheeler, W. C. 2005. Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics, 21, 446–494.

Rafinejad, J., Shahi, M., Navidpour, S., Jahanifard, E. & Hanafi-Bojd, A. A. (2020). Effect of climate change on spatial distribution of scorpions of significant public health importance in Iran. Asian Pacific Journal of Tropical Medicine, 13(11), 503.

Soleglad, M. E. & Fet, V. (2003). High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius, 11, 1–175.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.

Talal, S., Tesler, I., Sivan, J., Ben-Shlomo, R., Tahir, H. M., Prendini, L., Snir, S. & Gefen, E. (2015). Scorpion speciation in the Holy Land: multilocus phylogeography corroborates diagnostic differences in morphology and burrowing behavior among Scorpio subspecies and justifies recognition as phylogenetic, ecological and biological species. Molecular phylogenetics and evolution, 91, 226-237.

Ureta, C., González, E. J., Ramírez-Barrón, M., Contreras-Félix, G. A. & Santibáñez-López, C. E. (2020). Climate change will have an important impact on scorpion’s fauna in its most diverse country, Mexico. Perspectives in Ecology and Conservation, 18(2), 116-123.

Vachon, M. (1966) Liste des scorpions connus en Egypte, Arabie, Israël, Liban, Syrie, Jordanie, Turquie, Irak, Iran. Toxicon, 4, 209-218.

Vazirianzadeh, B., Hossienzadeh, M., Moravvej, S.A., Vazirianzadeh, M., & Mosavi, S.A. (2013). An epidemiological study on scorpion stings in Lordegan County, south-west of Iran. Archives of Razi Institute, 68(1): 71-76.

Ward, M. J., Ellsworth, S. A. & Nystrom, G. S. (2018). A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 151, 137–155.

West, A. M., Kumar, S., Wakie, T., Brown, C. S., Stohlgren, T. J., Laituri, M. & Bromberg, J. (2015). Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS One, 10(2), e0117893.

Zamani, A. (2016). The Field Guide to Spiders and Scorpions of Iran. Iranshenasi Publication, Tehran, Iran.

Zehzad, B., Kiabi, B. H. & Madjnoonian, H. (2002). The natural areas and landscape of Iran: an overview. Zoology in the Middle East, 26(1), 7-10.

Downloads

Published

2022-04-01

How to Cite

Ghassemi-Khademi, T. ., Khosravi, R. ., & Sajjad, A. . (2022). Climate niche modeling of Scorpio kruglovi (Scorpiones: Scorpionidae) in Iran. Journal of Wildlife and Biodiversity, 6(1), 87–101. https://doi.org/10.22120/jwb.2021.538276.1254