Diversity of Giardia intestinalis: Comparative evaluation of AI stool analysis, traditional techniques, and molecular phylogeny
Keywords:
AI stool analyzer, Molecular diagnostics, Conventional techniquesAbstract
Giardia intestinalis is one of the most prevalent intestinal protozoan parasites causing Giardiasis, a disease infecting diverse people of any age and characterized by abdominal cramps, diarrhea, and weight loss. Although traditional diagnostic techniques are still widespread, however, newer AI and molecular technologies have much to offer in the way of more precise and quicker detection. The aim of this research was to determine the prevalence of Giardiasis among patients presenting the Public Health Laboratory in Erbil, Iraq, between January–December 2024, and to create a comparison of the effectiveness of traditional, immunological, molecular, and AI-based diagnostic techniques. A total of 25,460 stool specimens were first screened by direct wet mount microscopy. Positives were further analyzed with trichrome and acid-fast stains for morphological identification. Immunochromatographic assays and the KU-F600 AI-based automatic fecal analyzer were utilized. Molecular detection by real-time PCR and standard DNA sequencing was utilized for G. intestinalis infection confirmation. The diversity result of G. intestinalis was evaluated using direct wet mount, revealed 290 positive cases, which was represented 1.14% infection rate. Immunochromatographic and AI-based methods significantly enhanced diagnostic speed and ease compared to conventional microscopy. Molecular techniques (real-time PCR and sequencing) demonstrated the highest accuracy in detecting G. intestinalis. Although traditional microscopy remains a useful screening tool, it is less reliable than molecular and AI-based methods. The KU-F600 AI analyzer exhibited strong potential for rapid and accurate diagnosis. Further research is recommended to validate the broader application of AI technologies in parasitological diagnostics.
References
M. A. Abate, A. Robbins-Hill, S. Lawler, Y. Assefa, & S. Reid. (2024). A scoping review of modifiable and behavioural drivers of infectious gastroenteritis among children in high-income countries. Arch Public Health, 82(1), 145. https://doi.org/https://doi.org/10.1186/s13690-024-01375-5
A. T. Al-Saeed, & S. H. Issa. (2006). Frequency of Giardia lamblia among children in Dohuk, northern Iraq. East Mediterr Health J, 12(5), 555-561.
A. H. O. Al-Taei. (2019). The prevalence of intestinal parasite among the attending peoples to Al-Hashimyah hospitals for seven years, Babylon province, Iraq. J Phys Conf Ser, 1294(6), 062022. https://doi.org/https://doi.org/10.1088/1742-6596/1294/6/062022
A. Alharbi, F. Toulah, M. Wakid, E. Azhar, S. Farraj, & A. Mirza. (2020). Detection of Giardia lamblia by Microscopic Examination, Rapid Chromatographic Immunoassay Test, and Molecular Technique. Cureus, 12. https://doi.org/https://doi.org/10.7759/cureus.10287
Altschul Sf, Gish W, Miller W, Myers Ew, & L. Dj. (1990). Basic local alignment search tool. J Mol Biol, 215(3), 403-410. https://doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2
Cacciò Sm, De Giacomo M, & P. E. (2002). Sequence analysis of the β-giardin gene and development of a PCR–restriction fragment length polymorphism assay to genotype Giardia lamblia cysts from human faecal samples. Int J Parasitol, 32(8), 1023-1030. https://doi.org/https://doi.org/10.1016/S0020-7519(02)00068-1
M. Damitie, Z. Mekonnen, T. Getahun, D. Santiago, & L. Leyns. (2018). Molecular epidemiology of Giardia duodenalis infection in humans in Southern Ethiopia: a triosephosphate isomerase gene-targeted analysis. Infect Dis Poverty, 7(1), 1-10. https://doi.org/https://doi.org/10.1186/s40249-018-0397-4
Feng Y, & X. L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. . Clin Microbiol Rev, 24(1), 110-114. https://doi.org/https://doi.org/10.1128/CMR.00033-10
Foronda P, Bargues Md, Abreu-Acosta N, Periago Mv, Valero Ma, & V. B. (2008). Identification of genotypes of Giardia intestinalis of human isolates in Egypt. J Eukaryot Microbiol, 55(5), 444-447. https://doi.org/https://doi.org/10.1111/j.1550-7408.2008.00348.x
L. S. Garcia, M. Arrowood, E. Kokoskin, G. P. Paltridge, D. R. Pillai, G. W. Procop, N. Ryan, R. Y. Shimizu, & G. Visvesvara. (2017). Practical guidance for clinical microbiology laboratories: laboratory diagnosis of parasites from the gastrointestinal tract. Clin Microbiol Rev, 31(1), e00025-00017. https://doi.org/https://doi.org/10.1128/cmr.00025-17
J. Gautam, R. P. P. Parajuli, & K. Pandey. (2024). Prevalence and associated factors of intestinal parasitic infections in the Badi indigenous communities of Western Nepal. J Health Popul Nutr, 43(1), 211. https://doi.org/https://doi.org/10.1186/s41043-024-00694-1
S. Ghosh, A. Debnath, A. Sil, S. De, D. J. Chattopadhyay, & P. Das. (2000). PCR detection of Giardia lamblia in stool: targeting intergenic spacer region of multicopy rRNA gene. Mol Cell Probes, 14(3), 181-189. https://doi.org/https://doi.org/10.1006/mcpr.2000.0302
P. Goni, B. Martin, M. Villacampa, A. Garcia, C. Seral, F. Castillo, & A. Clavel. (2012). Evaluation of an immunochromatographic dip strip test for simultaneous detection of Cryptosporidium spp, Giardia duodenalis, and Entamoeba histolytica antigens in human faecal samples. Eur J Clin Microbiol Infect Dis, 31, 2077-2082. https://doi.org/https://doi.org/10.1007/s10096-012-1544-7
M. Gurgitano, S. A. Angileri, G. M. Rodà, A. Liguori, M. Pandolfi, A. M. Ierardi, B. J. Wood, & G. Carrafiello. (2021). Interventional Radiology ex-machina: Impact of Artificial Intelligence on practice. La Radiol Med, 126, 998-1006. https://doi.org/https://doi.org/10.1007/s11547-021-01351-x
R. A. Guy, C. Xiao, & P. A. Horgen. (2004). Real-time PCR assay for detection and genotype differentiation of Giardia lamblia in stool specimens. J Clin Microbiol, 42(7), 3317-3320. https://doi.org/https://doi.org/10.1128/jcm.42.7.3317-3320.2004
S. T. Hajare, Y. Chekol, & N. M. Chauhan. (2022). Assessment of prevalence of Giardia lamblia infection and its associated factors among government elementary school children from Sidama zone, SNNPR, Ethiopia. PLoS ONE, 17(3), e0264812. https://doi.org/https://doi.org/10.1371/journal.pone.0264812
M. C. Halliez, & A. G. Buret. (2013). Extra-intestinal and long term consequences of Giardia duodenalis infections. World J Gastroenterol, 19(47), 8974. https://doi.org/https://doi.org/10.3748/wjg.v19.i47.8974
A. Harb, S. Abraham, M. O'dea, H. A. Hantosh, D. Jordan, & I. Habib. (2020). Sociodemographic Determinants of Healthcare-Seeking Options and Alternative Management Practices of Childhood Diarrheal Illness: A Household Survey among Mothers in Iraq. Am J Trop Med Hyg, 104(2), 748-755. https://doi.org/https://doi.org/10.4269/ajtmh.20-0529
T. a. H. Hasan, A. K. A. Muhaimid, & A. R. Mahmoud. (2020). Epidemiological study of Giardia lamblia in Tikrit city, Iraq. Syst Rev Pharma, 11(9), 102-106. https://doi.org/https://dx.doi.org/10.31838/srp.2020.9.17
E. C. Hobbs, A. Colling, R. B. Gurung, & J. Allen. (2021). The potential of diagnostic point of care tests (POCTs) for infectious and zoonotic animal diseases in developing countries: Technical, regulatory and sociocultural considerations. Transbound Emerg Dis, 68(4), 1835-1849. https://doi.org/https://doi.org/10.1111/tbed.13880
S. R. Hussein. (2022). Prevalence of Diarrhea Caused by Intestinal Parasites in Children in AL-Kufa City, Iraq. Egypt J Hosp Med, 89(1), 4723-4727. https://doi.org/https://dx.doi.org/10.21608/ejhm.2022.260585
T. K., & N. M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mole Biol Evol 10, 512-526. https://doi.org/https://doi.org/10.1093/oxfordjournals.molbev.a040023
M. H. Kenneth, T. Joseph, & N. Rose. (2024). AI Methods and Algorithms for Diagnosis of Intestinal Parasites: Applications, Challenges and Future Opportunities. East African Journal of Information Technology, 7(1), 366-379. https://doi.org/https://doi.org/10.37284/eajit.7.1.2282
S. Kumar, T. Arif, G. Ahamad, A. A. Chaudhary, S. Khan, & M. a. M. Ali. (2023). An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5. Diagnostics, 13(18), 2978. https://doi.org/https://doi.org/10.3390/diagnostics13182978
Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, & C. Sm. (2004). Genetic heterogeneity at the β-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol, 35(2), 207-213. https://doi.org/https://doi.org/10.1016/j.ijpara.2004.10.019
B. A. Mathison, & B. S. Pritt. (2022). Medical parasitology. Henry's Clinical Diagnosis and Management by Laboratory Methods. 24th ed. Philadelphia, PA: Elsevier.
M. Nisar, F. Khan, N. Ahmad, S. Ullah, A. Ullah, & M. W. Farooqi. (2024). Geographic And Demographic Influences on The Epidemiological Patterns of Giardia lamblia Infection in Rural Sites District Swat. Indus Journal of Bioscience Research, 2(02), 103-110. https://doi.org/https://doi.org/10.70749/ijbr.v2i02.121
M. Parčina, I. Reiter‐Owona, F. Mockenhaupt, V. Vojvoda, J. Gahutu, A. Hoerauf, & R. Ignatius. (2017). Highly sensitive and specific detection of Giardia duodenalis, Entamoeba histolytica, and Cryptosporidium spp. in human stool samples by the BD MAX™ Enteric Parasite Panel. Parasitol Res, 117, 447-451. https://doi.org/https://doi.org/10.1007/s00436-017-5720-7
B. S. Pritt. (2015). Chapter 4 - Molecular Diagnostics in the Diagnosis of Parasitic Infection. In A. Sails & Y.-W. Tang (Eds.), Methods Microbiol (Vol. 42, pp. 111-160). Academic Press. https://doi.org/https://doi.org/10.1016/bs.mim.2015.05.001
M. S. Qadir, Y. T. Hssein, S. I. Karim, M. K. Rasheed, Z. M. R. Palani, A. B. Mohammed, H. M. Satar, K. A. Hassan, K. D. Omer, & A. K. Karim. (2022). Prevalence of Giardia lamblia among children in Sulaimani city, Iraq. Int J Health Sci, 6(S2), 14827-14834. https://doi.org/https://doi.org/10.53730/ijhs.v6nS2.8941
Read Cm, Monis Pt, & T. Rca. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR–RFLP. . Infect Genet Evol, 4(2), 125-130. https://doi.org/https://doi.org/10.1016/j.meegid.2004.01.002
Reena Leeba Richard, & H. Yusof. (2018). Advancements in Parasite Diagnosis and Challenges in the Management of Parasitic Infections: A Mini Review. Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016), 22, 667–677. https://doi.org/https://doi.org/10.1007/978-981-13-0074-5_64
L. Rosado, J. M. C. Da Costa, D. Elias, & J. S. Cardoso. (2017). Mobile-based analysis of malaria-infected thin blood smears: automated species and life cycle stage determination. Sensors, 17(10), 2167. https://doi.org/https://doi.org/10.3390/s17102167
M. Roswell, J. Dushoff, & R. Winfree. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321-338. https://doi.org/https://doi.org/10.1111/oik.07202
U. Ryan, N. Hijjawi, Y. Feng, & L. Xiao. (2019). Giardia: an under-reported foodborne parasite. Inter J Parasitol, 49(1), 1-11. https://doi.org/https://doi.org/10.1016/j.ijpara.2018.07.003
Ryan Um, Monis Pt, Enemark Hl, Sulaiman Im, Fayer R, Thompson Rc, & E. Al. (2005). Cryptosporidium suis n. sp. (Apicomplexa: Cryptosporidiidae) in pigs (Sus scrofa). . Vet Parasitol, 130(3-4), 197-207. https://doi.org/https://doi.org/10.1016/j.vetpar.2005.03.002
B. Sarkari, G. Hosseini, M. H. Motazedian, M. Fararouei, & A. Moshfe. (2016). Prevalence and risk factors of intestinal protozoan infections: a population-based study in rural areas of Boyer-Ahmad district, Southwestern Iran. BMC Infectious Diseases, 16(1), 703. https://doi.org/10.1186/s12879-016-2047-4
T. Schuurman, P. Lankamp, A. Belkum, M. Kooistra-Smid, & A. Zwet. (2007). Comparison of microscopy, real-time PCR and a rapid immunoassay for the detection of Giardia lamblia in human stool specimens. Clin Microbiol Infect, 13 12, 1186-1191. https://doi.org/https://doi.org/10.1111/j.1469-0691.2007.01836.x
O. Shetty, M. Gurav, P. Bapat, N. Karnik, G. Wagh, T. Pai, S. Epari, & S. Desai. (2021). Moving next-generation sequencing into the clinic. India J of Med Paed Oncol, 42(03), 221-228. https://doi.org/https://doi.org/10.1055/s-0041-1732854
J.-H. Shin, S.-E. Lee, T. S. Kim, S.-H. Cho, J. Chai, & E. Shin. (2018). Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples. Korean J Parasitol, 56, 419-427. https://doi.org/https://doi.org/10.3347/kjp.2018.56.5.419
F. A. Soares, A. D. N. Benitez, B. M. D. Santos, S. H. N. Loiola, S. L. Rosa, W. B. Nagata, S. V. Inácio, C. T. N. Suzuki, K. D. S. Bresciani, & A. X. Falcão. (2020). A historical review of the techniques of recovery of parasites for their detection in human stools. Rev Soc Bras Med Trop, 53, e20190535. https://doi.org/https://doi.org/10.1590/0037-8682-0535-2019
Sulaiman Im, Fayer R, Bern C, Gilman Rh, Trout Jm, Schantz Pm, & E. Al. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. . Emerg Infect Dis, 11, 1444-1452. https://doi.org/https://doi.org/10.3201/eid0911.030180
K. Tamura, G. Stecher, & S. Kumar. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. https://doi.org/https://doi.org/10.1093/molbev/msab120.
P. Van Lint, J. Rossen, S. Vermeiren, V. Elst, S. Weekx, J. Van Schaeren, & A. Jeurissen. (2013). Detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in clinical stool samples by using multiplex real-time PCR after automated DNA isolation. Acta Clin Belg, 68, 188-192. https://doi.org/https://doi.org/10.2143/acb.3170
J. Verweij, R. Blangé, K. Templeton, J. Schinkel, E. Brienen, M. Van Rooyen, L. Van Lieshout, & A. Polderman. (2004). Simultaneous Detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in Fecal Samples by Using Multiplex Real-Time PCR. J Clin Microbiol, 42, 1220-1223. https://doi.org/https://doi.org/10.1128/jcm.42.3.1220-1223.2004
J. Wambani, & P. Okoth. (2022). Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa. J Trop Med, 2022(1), 7324281. https://doi.org/https://doi.org/10.1155/2022/7324281
Wielinga Cm, Thompson Rca, Monis Pt, & R. Um. (2011). Identification of Giardia duodenalis genotypes in imported and local dogs in the Netherlands. Vet Parasitol, 181(1), 29-36. https://doi.org/https://doi.org/10.1016/j.vetpar.2011.04.006
E. Won, S. Kim, S.-J. Kee, J. H. Shin, S. Suh, J. Chai, D. Ryang, & M. Shin. (2016). Multiplex Real-Time PCR Assay Targeting Eight Parasites Customized to the Korean Population: Potential Use for Detection in Diarrheal Stool Samples from Gastroenteritis Patients. PLoS ONE, 11. https://doi.org/https://doi.org/10.1371/journal.pone.0166957
Zahedi A, Ryan U, Monis P, & O. C. (2017). Molecular typing of Giardia duodenalis in humans in Queensland–first report of assemblage E. . Parasit Vectors. , 10, 49. https://doi.org/https://doi.org/10.1186/s13071-017-1976-3
M. Zaki, & Z. Dhubyan. (2022). Prevalence of Entamoeba histolytica and Giardia lamblia Associated with Diarrhea in Children referring to lbn Al-Atheer Hospital in Mosul, Iraq. Arch Razi Inst, 71(1). https://doi.org/https://doi.org/10.22092/ARI.2021.356312.1820
R. F. Zaman, H. Khanum, S. Nargis, & P. K. Das. (2017). Comparison of saline, iodine and koh wet mount preparations for occurrence of parasites in stool samples from patients attending ICDDR, B. Bangladesh J Zool, 45(2), 159-170. https://doi.org/https://doi.org/10.3329/bjz.v45i2.35711
Y.-G. Zhang, J. Chen, H. Pan, J. Xiao, L. Jiang, Q. Zhu, H.-Y. Wu, & Z.-Y. Wang. (2022). Development and Preliminary Application of a Triplex Real-Time Quantitative PCR Assay for the Simultaneous Detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum. Front Microbiol, 13. https://doi.org/https://doi.org/10.3389/fmicb.2022.888529
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.