Assessing toxic element contamination in protected areas: A case study of the Sungun copper mine's impact on wildlife
Keywords:
Heavy elements, Non-invasive risk assessment, Conservation areas, Wildlife excretionAbstract
Mining activities significantly contribute to the concentration of toxic elements (TEs) in protected areas (PAs), adversely affecting wildlife. The presence of the Sungun porphyry copper mine within the Arasbaran Biosphere Reserve (ABR) in East Azarbaijan, Iran, raises concerns about the potential impacts of TE contamination on the local ecosystem. This study pioneers the non-invasive monitoring of faecal toxic elements in Iran’s protected areas, offering the first comparative analysis between the mining-impacted ABR and the relatively pristine Kiamaky Wildlife Refuge (KWR). We collected faecal samples from herbivorous (Capra aegagrus, Lepus europaeus) and carnivorous (Canis lupus, Lynx lynx) mammals across these sites and analyzed arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) concentrations using atomic absorption spectrometry. Results showed significantly higher TE levels in ABR compared to KWR (eg, PB median 17.7 ± 3.2 µg/kg vs. 1.9 ± 0.5 µg/kg; p < 0.01). Carnivores exhibited elevated As (median 14.00 ± 2.1 µg/kg) and Cd (4.85 ± 1.1 µg/kg) relative to herbivores, while herbivores had higher Pb (11.20 ± 2.4 µg/kg) levels. Our findings underscore the value of faecal biomonitoring as a non-invasive, cost-effective tool for assessing toxic element exposure in wildlife, providing critical data for conservation management in mining-affected landscapes. Importantly, this study informs targeted monitoring and intervention strategies necessary to safeguard biodiversity in Iran’s protected areas.
References
Agency for Toxic Substances and Disease Registry. (2007). Toxicological profile for arsenic. https://doi.org/10.15620/cdc:11481
Agency for Toxic Substances and Disease Registry. (2020). Toxicological profile for lead. https://doi.org/10.15620/cdc:95222
Aghili, S., Vaezihir, A., & Hosseinzadeh, M. (2018). Distribution and modeling of heavy metal pollution in the sediment and water mediums of Pakhir River, at the downstream of Sungun mine tailing dump, Iran. Environmental Earth Sciences, 77(4), 1–13. https://doi.org/10.1007/s12665-018-7283-z
Alejandra Aguilar, C., Canedo, Y., Montalvo, C., Ruiz, A., & Barreto, R. (2021). Heavy Metal Contamination in a Protected Natural Area from Southeastern Mexico: Analysis of Risks to Human Health. In Heavy Metals - Their Environmental Impacts and Mitigation. IntechOpen. https://doi.org/10.5772/intechopen.95591
Alma, Ö. G. (2011). Comparison of Robust Regression Methods in Linear Regression. https://api.semanticscholar.org/CorpusID:10974031
Andersson Stavridis, M., Røed, S. B., Hansen, B. B., Mikkelsen, Ø., Ciesielski, T. M., & Jenssen, B. M. (2024). Tracing the footprints of Arctic pollution: Spatial variations in toxic and essential elements in Svalbard reindeer (Rangifer tarandus platyrhynchus) faeces. Science of the Total Environment, 906(7491). https://doi.org/10.1016/j.scitotenv.2023.167562
Andrews, S. M., Johnson, M. S., & Cooke, J. A. (1984). Cadmium in small mammals from grassland established on metalliferous mine waste. Environmental Pollution Series A, Ecological and Biological, 33(2), 153–162. https://doi.org/10.1016/0143-1471(84)90175-2
Arrondo, E., Navarro, J., Perez-García, J. M., Mateo, R., Camarero, P. R., Martin-Doimeadios, R. C. R., Jiménez-Moreno, M., Cortés-Avizanda, A., Navas, I., García-Fernández, A. J., Sánchez-Zapata, J. A., & Donázar, J. A. (2020). Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger. Environmental Pollution, 266, 115022. https://doi.org/10.1016/j.envpol.2020.115022
Badry, A., Schenke, D., Treu, G., & Krone, O. (2021). Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environmental Research, 193, 110602. https://doi.org/10.1016/j.envres.2020.110602
Bala, M., Sharma, A., & Sharma, G. (2021). Spatial Variation of Trace Metals between Industrial and Rural Dwelling Birds of India. Nature Environment and Pollution Technology, 20(5), 1873–1879. https://doi.org/10.46488/NEPT.2021.v20i05.002
Bauerová, P., Vinklerová, J., Hraníček, J., Čorba, V., Vojtek, L., Svobodová, J., & Vinkler, M. (2017). Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. Science of The Total Environment, 601–602, 1556–1565. https://doi.org/10.1016/j.scitotenv.2017.05.276
Böswald, L. F., Dobenecker, B., Clauss, M., & Kienzle, E. (2018). A comparative meta‐analysis on the relationship of faecal calcium and phosphorus excretion in mammals. Journal of Animal Physiology and Animal Nutrition, 102(2), 370–379. https://doi.org/10.1111/jpn.12844
Buch, A. C., Sims, D. B., Correia, M. E. F., Marques, E. D., & Silva-Filho, E. V. (2023). Preliminary assessment of potential pollution risks in soils: case study of the Córrego do Feijão Mine dam failure (Brumadinho, Minas Gerais, Brazil). International Journal of Mining, Reclamation and Environment, 37(8), 569–589. https://doi.org/10.1080/17480930.2023.2226474
Burger, J. (2008). Assessment and management of risk to wildlife from cadmium. Science of The Total Environment, 389(1), 37–45. https://doi.org/10.1016/j.scitotenv.2007.08.037
Bussières, D., Ayotte, P., Levallois, P., Dewailly, É., Nieboer, E., Gingras, S., & Côté, S. (2004). Exposure of a Cree Population Living near Mine Tailings in Northern Quebec (Canada) to Metals and Metalloids. Archives of Environmental Health: An International Journal, 59(12), 732–741. https://doi.org/10.1080/00039890409602960
Buzan, E., Potočnik, H., Pokorny, B., Potušek, S., Iacolina, L., Gerič, U., Urzi, F., & Kos, I. (2024). Molecular analysis of scats revealed diet and prey choice of grey wolves and Eurasian lynx in the contact zone between the Dinaric Mountains and the Alps. Frontiers in Zoology, 21(1), 9. https://doi.org/10.1186/s12983-024-00530-6
Chen, J., Xue, X., & Li, M. (2022). Editorial: Trace elements in the environment: Biogeochemical cycles and bioremediation. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1056528
Darvishi, A., Fakheran, S., & Soffianian, A. (2015). Monitoring landscape changes in Caucasian black grouse (Tetrao mlokosiewiczi) habitat in Iran during the last two decades. Environmental Monitoring and Assessment, 187(7), 443. https://doi.org/10.1007/s10661-015-4659-3
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science & Technology, 47(10), 4967–4983. https://doi.org/10.1021/es305071v
Eeva, T., Raivikko, N., Espín, S., Sánchez-Virosta, P., Ruuskanen, S., Sorvari, J., & Rainio, M. (2020). Bird Feces as Indicators of Metal Pollution: Pitfalls and Solutions. Toxics, 8(4), 124. https://doi.org/10.3390/toxics8040124
Ethier, D. M., Kyle, C. J., & Nocera, J. J. (2014). Tracking animal movement by comparing trace element signatures in claws to spatial variability of elements in soils. Science of The Total Environment, 468–469, 699–705. https://doi.org/10.1016/j.scitotenv.2013.08.091
Evans, M. N., Waller, S., Müller, C. T., Goossens, B., Smith, J. A., Bakar, M. S. A., & Kille, P. (2022). The price of persistence: Assessing the drivers and health implications of metal levels in indicator carnivores inhabiting an agriculturally fragmented landscape. Environmental Research, 207, 112216. https://doi.org/10.1016/j.envres.2021.112216
Fashola, M., Ngole-Jeme, V., & Babalola, O. (2016). Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. International Journal of Environmental Research and Public Health, 13(11), 1047. https://doi.org/10.3390/ijerph13111047
Feng, W., Wang, Z., Xu, H., Zhang, D., Zhang, H., & Zhu, W. (2020). Species-specific bioaccumulation of trace metals among fish species from Xincun Lagoon, South China Sea. Scientific Reports, 10(1), 21800. https://doi.org/10.1038/s41598-020-77917-y
Filimon, M. N., Popescu, R., Horhat, F. G., & Voia, O. S. (2016). Environmental impact of mining activity in Bor area as indicated by the distribution of heavy metals and bacterial population dynamics in sediment. Knowledge and Management of Aquatic Ecosystems, 417, 30. https://doi.org/10.1051/kmae/2016017
Firozjaei, M. K., Sedighi, A., Firozjaei, H. K., Kiavarz, M., Homaee, M., Arsanjani, J. J., Makki, M., Naimi, B., & Alavipanah, S. K. (2021). A historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based approach. Ecological Indicators, 122(December 2020), 107264. https://doi.org/10.1016/j.ecolind.2020.107264
Ford, K. L., & Beyer, W. N. (2014). Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites. Environmental Monitoring and Assessment, 186(3), 1899–1905. https://doi.org/10.1007/s10661-013-3503-x
Ganjeizadeh Rohani, F., & Mohamadi, N. (2022). Distribution and risk assessment of toxic metal pollution in the soil and sediment around the copper mine. Environmental Health Engineering and Management, 9(3), 295–303. https://doi.org/10.34172/EHEM.2022.30
Ganswindt, A., Heistermann, M., Borragan, S., & Hodges, J. K. (2002). Assessment of testicular endocrine function in captive African elephants by measurement of urinary and fecal androgens. Zoo Biology, 21(1), 27–36. https://doi.org/10.1002/zoo.10034
Godinho, D. P., Serrano, H. C., Da Silva, A. B., Branquinho, C., & Magalhães, S. (2018). Effect of Cadmium Accumulation on the Performance of Plants and of Herbivores That Cope Differently With Organic Defenses. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01723
Gunn, M. A., Moran, Z. S., Pracheil, B. M., & Allen, P. J. (2019). Spatial changes in trace element and strontium isotope water chemistry in a temperate river system with application to sturgeon movement. Journal of Freshwater Ecology, 34(1), 739–755. https://doi.org/10.1080/02705060.2019.1682079
Gupta, V., & Bakre, P. (2012). Metal contamination in mammalian fauna of Sariska Tiger Reserve, Alwar, India. Journal of Ecophysiology and Occupational Health, 12(1–2), 43–48.
Habibzadeh, N., & Rafieyan, O. (2016). Land-cover patterns surrounding Caucasian grouse leks in Arasbaran region, East Azerbaijan, Iran. Wildlife Research, 43(3), 267–275. https://doi.org/10.1071/WR15181
Hama Aziz, K. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/D3RA00723E
Hasan, M., Rahman, M., Ahmed, A. al, Islam, M. A., & Rahman, M. (2022). Heavy metal pollution and ecological risk assessment in the surface water from a marine protected area, Swatch of No Ground, north-western part of the Bay of Bengal. Regional Studies in Marine Science, 52, 102278. https://doi.org/10.1016/j.rsma.2022.102278
Hoekstra, P., Braune, B., Elkin, B., Armstrong, F., & Muir, D. (2003). Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic. The Science of The Total Environment, 309(1–3), 81–92. https://doi.org/10.1016/S0048-9697(02)00684-8
Hort, J., Mikoláš, P., & Janiga, M. (2017). Heavy metals and other elements in faeces of wild ruminants in the area of paper mill industry. Oecologia Montana, 26(November), 56–62.
Hosseinpour, M., Osanloo, M., & Azimi, Y. (2022). Evaluation of positive and negative impacts of mining on sustainable development by a semi-quantitative method. Journal of Cleaner Production, 366, 132955. https://doi.org/10.1016/j.jclepro.2022.132955
Imaeda, C., Niizuma, Y., & Ohura, T. (2021). Potential of barn swallow feces as a non-destructive biomonitoring tool for anthropogenic pollutants: Site and chemical specificities and an evaluation of soil contaminants. Environmental Pollutants and Bioavailability, 33(1), 317–325. https://doi.org/10.1080/26395940.2021.1986136
IUCN. (2024). Effective Protected Areas. https://www.iucn.org/our-work/topic/effective-protected-areas
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
Kazakova, J., Villar-Navarro, M., Ramos-Payán, M., Aranda-Merino, N., Román-Hidalgo, C., Bello-López, M. Á., & Fernández-Torres, R. (2021). Monitoring of pharmaceuticals in aquatic biota (Procambarus clarkii) of the Doñana National Park (Spain). Journal of Environmental Management, 297. https://doi.org/10.1016/j.jenvman.2021.113314
Kiabi, B. (1975). Ecology of Persian Wild Goat (Capra aegagrus). Michigan State University.
Lima, M. W. de, Pereira, W. V. da S., Souza, E. S. de, Teixeira, R. A., Palheta, D. da C., Faial, K. do C. F., Costa, H. F., & Fernandes, A. R. (2022). Bioaccumulation and human health risks of potentially toxic elements in fish species from the southeastern Carajás Mineral Province, Brazil. Environmental Research, 204, 112024. https://doi.org/10.1016/j.envres.2021.112024
Madgett, A. S., Yates, K., Webster, L., McKenzie, C., & Moffat, C. F. (2021). The concentration and biomagnification of trace metals and metalloids across four trophic levels in a marine food web. Marine Pollution Bulletin, 173, 112929. https://doi.org/10.1016/j.marpolbul.2021.112929
Marcheselli, M., Sala, L., & Mauri, M. (2010). Bioaccumulation of PGEs and other traffic-related metals in populations of the small mammal Apodemus sylvaticus. Chemosphere, 80(11), 1247–1254. https://doi.org/10.1016/j.chemosphere.2010.06.070
Markowski, M., Bańbura, M., Kaliński, A., Markowski, J., Skwarska, J., Wawrzyniak, J., Zieliński, P., & Bańbura, J. (2014). Spatial and Temporal Variation of Lead, Cadmium, and Zinc in Feathers of Great Tit and Blue Tit Nestlings in Central Poland. Archives of Environmental Contamination and Toxicology, 67(4), 507–518. https://doi.org/10.1007/s00244-014-0028-4
Martín-Vélez, V., Hortas, F., Taggart, M. A., Green, A. J., ÓHanlon, N. J., & Sánchez, M. I. (2021). Spatial variation and biovectoring of metals in gull faeces. Ecological Indicators, 125, 107534. https://doi.org/10.1016/j.ecolind.2021.107534
Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In Heavy Metals. InTech. https://doi.org/10.5772/intechopen.76082
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Moore, F., Esmaeili, K., & Keshavarzi, B. (2011). Assessment of Heavy Metals Contamination in Stream Water and Sediments Affected by the Sungun Porphyry Copper Deposit, East Azerbaijan Province, Northwest Iran. Water Quality, Exposure and Health, 3(1), 37–49. https://doi.org/10.1007/s12403-011-0042-y
Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., Hoveidi, H., Nasrabadi, I., Pezeshk, H., & Rashidinejad, F. (2009). Influence of Sungun copper mine on groundwater quality, NW Iran. Environmental Geology, 58(4), 693–700. https://doi.org/10.1007/s00254-008-1543-2
Ni, S., Liu, G., Zhao, Y., Zhang, C., & Wang, A. (2023). Distribution and Source Apportionment of Heavy Metals in Soil around Dexing Copper Mine in Jiangxi Province, China. Sustainability, 15(2), 1143. https://doi.org/10.3390/su15021143
Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J. C., Arellano-Mendoza, M. G., Tamay-Cach, F., Valenzuela-Limón, O. L., García-Montalvo, E. A., & Hernández-Zavala, A. (2020). Arsenic exposure: A public health problem leading to several cancers. Regulatory Toxicology and Pharmacology, 110, 104539. https://doi.org/10.1016/j.yrtph.2019.104539
Parker, G. H., & Hamr, J. (2001). Metal levels in body tissues, forage and fecal pellets of elk (Cervus elaphus) living near the ore smelters at Sudbury, Ontario. Environmental Pollution, 113(3), 347–355. https://doi.org/10.1016/S0269-7491(00)00183-4
Parker, K. H., Bishop, J. M., Serieys, L. E. K., Mateo, R., Camarero, P. R., & Leighton, G. R. M. (2023). A heavy burden: Metal exposure across the land-ocean continuum in an adaptable carnivore. Environmental Pollution, 327, 121585. https://doi.org/10.1016/j.envpol.2023.121585
Parker, Kim H., Bishop, J. M., Serieys, L. E. K., Mateo, R., Camarero, P. R., & Leighton, G. R. M. (2023). A heavy burden: Metal exposure across the land-ocean continuum in an adaptable carnivore. Environmental Pollution, 327(February), 121585. https://doi.org/10.1016/j.envpol.2023.121585
Pereira, R., Pereira, M. L., Ribeiro, R., & Gonçalves, F. (2006). Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution, 139(3), 561–575. https://doi.org/10.1016/j.envpol.2005.04.038
Peterson, Ryan, A. (2021). Finding Optimal Normalizing Transformations via bestNormalize. The R Journal, 13(1), 310. https://doi.org/10.32614/RJ-2021-041
Ramezani, E., Talebi, T., Alizadeh, K., Shirvany, A., Hamzeh’ee, B., & Behling, H. (2021). Long-term persistence of steppe vegetation in the highlands of Arasbaran protected area, northwestern Iran, as inferred from a pollen record. Palynology, 45(1), 15–26. https://doi.org/10.1080/01916122.2019.1702117
Reglero, M. M., Monsalve-González, L., Taggart, M. A., & Mateo, R. (2008). Transfer of metals to plants and red deer in an old lead mining area in Spain. Science of The Total Environment, 406(1–2), 287–297. https://doi.org/10.1016/j.scitotenv.2008.06.001
Robert, R. D., & Johnson, M. S. (1978). Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environmental Pollution, 16, 293–310.
Roberts, R. D., Johnson, M. S., & Hutton, M. (1978). Lead contamination of small mammals from abandoned metalliferous mines. Environmental Pollution (1970), 15(1), 61–69. https://doi.org/10.1016/0013-9327(78)90061-7
Rodríguez-Estival, J., Martinez-Haro, M., Monsalve-González, L., & Mateo, R. (2011). Interactions between endogenous and dietary antioxidants against Pb-induced oxidative stress in wild ungulates from a Pb polluted mining area. Science of The Total Environment, 409(14), 2725–2733. https://doi.org/10.1016/j.scitotenv.2011.04.010
Santilli, F., Viviano, A., & Mori, E. (2023). Dietary habits of the European brown hare: summary of knowledge and management relapses. Ethology Ecology & Evolution, 1–20. https://doi.org/10.1080/03949370.2023.2213200
Sojka, M., Jaskuła, J., Barabach, J., Ptak, M., & Zhu, S. (2022). Heavy metals in lake surface sediments in protected areas in Poland: concentration, pollution, ecological risk, sources and spatial distribution. Scientific Reports, 12(1), 15006. https://doi.org/10.1038/s41598-022-19298-y
Subhanullah, M., Hassan, N., Ali, S., Saleh, I. A., Ilyas, M., Rawan, B., Ullah, W., Iqbal, B., Okla, M. K., Alaraidh, I. A., & Fahad, S. (2024). The detrimental effects of heavy metals on tributaries exert pressure on water quality, Crossocheilus aplocheilus, and the well-being of human health. Scientific Reports, 14(1), 2868. https://doi.org/10.1038/s41598-024-53340-5
Sun, Y., Lu, Z., Xiao, K., Zeng, L., Wang, J., Zhang, Y., & Gabrielsen, G. W. (2022). Spatial and interspecific variation of accumulated highly toxic trace elements between fifteen bird species feathers from Antarctic, Arctic and China. Environmental Technology & Innovation, 27, 102479. https://doi.org/10.1016/j.eti.2022.102479
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment (pp. 133–164). https://doi.org/10.1007/978-3-7643-8340-4_6
US.EPA. (1996). Acid digestion of sendiments, sludges and soils: Method 3050-B. In Test Methods for Evaluating Solid Waste, (Issue February, p. 30). Washington, DC. https://bit.ly/3cd3wUl
ggplot2: Elegant Graphics for Data Analysis , 35 Journal of Statistical Software ___ (2010). https://doi.org/10.18637/jss.v035.b01
van Beest, F. M., Schmidt, N. M., Stewart, L., Hansen, L. H., Michelsen, A., Mosbacher, J. B., Gilbert, H., Le Roux, G., & Hansson, S. V. (2023). Geochemical landscapes as drivers of wildlife reproductive success: Insights from a high-Arctic ecosystem. Science of The Total Environment, 903, 166567. https://doi.org/10.1016/j.scitotenv.2023.166567
Webster, A. B., Callealta, J. F., Bennett, N. C., & Ganswindt, A. (2022). Non-Lethal Assessment of Potentially Toxic Elements Across Mammalian Trophic Levels in African Savannahs. Frontiers in Environmental Science, 9(January). https://doi.org/10.3389/fenvs.2021.794487
Webster, A. B., Ganswindt, A., Small, C., & Rossouw, R. (2021). Optimised ICP-MS quantification method for using animal faeces as a measure of protected area ecosystem health. MethodsX, 8, 101441. https://doi.org/10.1016/j.mex.2021.101441
Webster, A. B., Rossouw, R., Callealta, F. J., Bennett, N. C., & Ganswindt, A. (2021). Assessment of trace element concentrations in sediment and vegetation of mesic and arid African savannahs as indicators of ecosystem health. Science of The Total Environment, 760, 143358. https://doi.org/10.1016/j.scitotenv.2020.143358
Xia, W., Chen, L., Deng, X., Liang, G., Giesy, J. P., Rao, Q., Wen, Z., Wu, Y., Chen, J., & Xie, P. (2019). Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China. Science of the Total Environment, 672(7), 883–892. https://doi.org/10.1016/j.scitotenv.2019.03.134
Yaw Hadzi, G. (2022). Effect of Mining on Heavy Metals Toxicity and Health Risk in Selected Rivers of Ghana. In Environmental Impact and Remediation of Heavy Metals. IntechOpen. https://doi.org/10.5772/intechopen.102093
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.