Forthcoming

Integrative Phylogenetic, Genomic, Acoustic, and Geospatial Analyses of U.S. Frog Species Using Mitochondrial COI Sequences

Authors

  • My Abdelmajid Kassem Plant Genomics and Bioinformatics Lab, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA

Keywords:

Amphibian biodiversity, Phylogenetics, COI barcoding, Genome size evolution, Bioacoustics, Species distribution, Frog call analysis, Geospatial mapping, Frog phylogeny, Trait integration

Abstract

Amphibians are critical bioindicators of environmental health, yet integrative frameworks combining genomic, acoustic, and spatial data remain underutilized in regional biodiversity assessments. Here, we present a reproducible bioinformatics workflow that integrates molecular phylogenetics, genome size analysis, acoustic feature extraction, and geospatial occurrence mapping to investigate patterns of amphibian diversity across 30 frog species in the United States. Using mitochondrial cytochrome oxidase I (COI) sequences, we reconstructed a robust maximum-likelihood phylogeny, identifying clear clade-level structuring among Hylidae, Ranidae, and Bufonidae. Genome size data integrated into the phylogenetic context revealed consistent family-level patterns, with Hylidae exhibiting larger genome sizes relative to other families. Acoustic analyses of five focal species demonstrated significant interspecific differences in call duration and dominant frequency, confirmed through principal component analysis (PCA), highlighting the utility of bioacoustics in species discrimination. Geospatial mapping of over 3,000 occurrence records retrieved from GBIF revealed amphibian diversity hotspots in the Southeastern United States, corresponding with known gradients of habitat heterogeneity and climatic suitability. The workflow integrates MAFFT-based sequence alignments, FastTree phylogenetic reconstruction, librosa-based acoustic feature extraction, and GBIF-powered spatial analyses into a single open-source, reproducible pipeline. This integrative informatics framework offers a scalable tool for amphibian biodiversity monitoring, conservation prioritization, and hypothesis-driven ecological research by leveraging computational reproducibility and multi-modal trait data.

References

Amezquita, A., Lima, A.P., Jehle, R., Castellanos, L., Ramos, Ó., Crawford, A.J., Gasser, H., Hödl, W., (2009). Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol. J. Linn. Soc. 98(4), 826–838. https://doi.org/10.1111/j.1095-8312.2009.01324.x.

Barker, D., Pagel, M., (2005). Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Comput. Biol. 1(1), e3. https://doi.org/10.1371/journal.pcbi.0010003.

Beane, J., Braswell, A.L., Mitchell, J.C., Palmer, W.M., Harrison, J.R., (2010). Amphibians and Reptiles of the Carolinas and Virginia, second ed. University of North Carolina Press, Chapel Hill.

Blaustein, A.R., Wake, D.B., Sousa, W.P., (1994). Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv. Biol. 8(1), 60–71. https://doi.org/10.1046/j.1523-1739.1994.08010060.x.

Bonett, R.M., Blair, A.L., (2017). Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl. Acad. Sci. U.S.A. 114(39), 9936–9941. https://doi.org/10.1073/pnas.1703877114.

Brodie, S., Allen-Ankins, S., Towsey, M., Roe, P., Schwarzkopf, L., (2020). Automated species identification of frog choruses in environmental recordings using acoustic indices. Ecol. Indic. 119, 106852. https://doi.org/10.1016/j.ecolind.2020.106852.

Buckley, L.B., Jetz, W., (2007). Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. B. 274(1614), 1167–1173. https://doi.org/10.1098/rspb.2006.0436.

Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., De Hoon, M.J.L., (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163.

Duellman, W.E., Trueb, L., (1994). Biology of Amphibians. Johns Hopkins University Press, Baltimore.

Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M., Gemmell, N.J., (2007). Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 2(10), e1109. https://doi.org/10.1371/journal.pone.0001109.

Gerhardt, H.C., Huber, F., (2002). Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. University of Chicago Press, Chicago.

Gibb, R., Browning, E., Glover-Kapfer, P., Jones, K.E., (2019). Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10(2), 169–185. https://doi.org/10.1111/2041-210X.13101.

Grant, E.H.C., Muths, E., Katz, R.A., Canessa, S., Adams, M.J., Ballard, J.R., et al., (2017). Using decision analysis to support proactive management of emerging infectious wildlife diseases. Front. Ecol. Environ. 18(5), 338–344. https://doi.org/10.1002/fee.1481.

Gregory, T.R., (2002). Animal Genome Size Database. http://www.genomesize.com. (Accessed 7 July 2025).

Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R., (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218.

Hogg, C.J., (2024). Translating genomic advances into biodiversity conservation. Nat. Rev. Genet. 25, 362–373. https://doi.org/10.1038/s41576-023-00671-0.

Jonsson, B., Jonsson, N., (2019). Phenotypic plasticity and epigenetics of fish: embryo temperature affects later-developing life-history traits. Aquat. Biol. 28, 21–32. https://doi.org/10.3354/ab00707.

Katoh, K., Standley, D.M., (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.

Kluyver, T., Ragan-Kelley, B., Pérez, F., et al., (2016). Jupyter Notebooks – a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press, Amsterdam, pp. 87–90. https://doi.org/10.3233/978-1-61499-649-1-87.

Kohler, J., Jansen, M., Rodríguez, A., et al., (2017). The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa 4251(1), 1–124. https://doi.org/10.11646/zootaxa.4251.1.1.

Kozak, K.H., Wiens, J.J., (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60(12), 2604–2621. https://doi.org/10.1111/j.0014-3820.2006.tb01893.x.

Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R., Bartlein, P.J., (2009). Projected climate-induced faunal change in the Western Hemisphere. Ecology 90(3), 588–597. https://doi.org/10.1890/08-0823.1.

Leiva, F.P., Calosi, P., Verberk, W.C.E.P., (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philos. Trans. R. Soc. B 374(1778), 20190035. https://doi.org/10.1098/rstb.2019.0035.

Letunic, I., Bork, P., (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301.

Liedtke, H.C., Gower, D.J., Wilkinson, M., Gomez-Mestre, I., (2018). Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2, 1792–1799. https://doi.org/10.1038/s41559-018-0674-4.

Lips, K.R., (2016). Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371(1709), 20150465. https://doi.org/10.1098/rstb.2015.0465.

McFee, B., McVicar, M., Faronbi, D., et al., (2025). librosa/librosa: 0.11.0. https://doi.org/10.5281/zenodo.591533.

McKinney, W., (2010). Data structures for statistical computing in Python. In: van der Walt, S., Millman, J. (Eds.), Proc. 9th Python in Science Conference, Austin, TX, pp. 51–56. https://doi.org/10.25080/Majora-92bf1922-00a.

NCBI, (2025). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/.

Pedregosa, F., Varoquaux, G., Gramfort, A., et al., (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. https://jmlr.org/papers/v12/pedregosa11a.html.

Petranka, J.W., (1998). Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC.

Pigot, A.L., Tobias, J.A., (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16(3), 330–338. https://doi.org/10.1111/ele.12043.

Price, M.N., Dehal, P.S., Arkin, A.P., (2010). FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490.

Pyron, R.A., Wiens, J.J., (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61(2), 543–583. https://doi.org/10.1016/j.ympev.2011.06.012.

Raxworthy, C.J., Ingram, C.M., Rabibisoa, N., Pearson, R.G., (2007). Applications of ecological niche modeling for species delimitation: A review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56(6), 907–923. https://doi.org/10.1080/10635150701775111.

Robertson, T., Döring, M., Guralnick, R., et al., (2014). The GBIF integrated publishing toolkit: facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9(8), e102623. https://doi.org/10.1371/journal.pone.0102623.

Rojas, R.R., Chaparro, J.C., Carvalho, V.T., et al., (2016). Uncovering the diversity in the Amazophrynella minuta complex: integrative taxonomy reveals a new species of Amazophrynella (Anura, Bufonidae) from southern Peru. Zookeys 563, 43–71. https://doi.org/10.3897/zookeys.563.6084.

Ryan, M.J., Rand, A.S., (1993). Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340(1292), 187–195. https://doi.org/10.1098/rstb.1993.0057.

Santos, J.C., (2012). Fast molecular evolution associated with high active metabolic rates in poison frogs. Mol. Biol. Evol. 29(8), 2001–2018. https://doi.org/10.1093/molbev/mss069.

Smith, M.A., Fisher, B.L., Hebert, P.D.N., (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. B 360(1462), 1825–1834. https://doi.org/10.1098/rstb.2005.1714.

Smith, S.A., Brown, J.W., Walker, J.F., (2018). So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS One 13(5), e0197433. https://doi.org/10.1371/journal.pone.0197433.

Stuart, S.N., Chanson, J.S., Cox, N.A., et al., (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306(5702), 1783–1786. https://doi.org/10.1126/science.1103538.

Sun, C., Mueller, R.L., (2014). Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biol. Evol. 6(7), 1818–1829. https://doi.org/10.1093/gbe/evu143.

Van Rossum, G., Drake, F.L., (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.

Vences, M., Thomas, M., Bonett, R.M., Vieites, D.R., (2005). Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos. Trans. R. Soc. B 360(1462), 1859–1868. https://doi.org/10.1098/rstb.2005.1717.

Vieites, D.R., Wollenberg, K.C., Andreone, F., et al., (2009). Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory. Proc. Natl. Acad. Sci. U.S.A. 106(20), 8267–8272. https://doi.org/10.1073/pnas.0810821106.

Wake, D.B., Vredenburg, V.T., (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105(Suppl. 1), 11466–11473. https://doi.org/10.1073/pnas.0801921105.

Waskom, M.L., (2021). Seaborn: statistical data visualization. J. Open Source Softw. 6(60), 3021. https://doi.org/10.21105/joss.03021.

Wells, K.D., (2007). The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago.

Wiens, J.J., Donoghue, M.J., (2004). Ecology and area cladograms: the importance of geography in phylogeny. Trends Ecol. Evol. 19(12), 639–644. https://doi.org/10.1016/j.tree.2004.09.011.

Wilkins, M.R., Seddon, N., Safran, R.J., (2013). Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol. Evol. 28(3), 156–166. https://doi.org/10.1016/j.tree.2012.10.002.

Published

2025-09-02

How to Cite

Kassem, M. A. (2025). Integrative Phylogenetic, Genomic, Acoustic, and Geospatial Analyses of U.S. Frog Species Using Mitochondrial COI Sequences. Journal of Wildlife and Biodiversity, 9(X). Retrieved from https://wildlife-biodiversity.com/index.php/jwb/article/view/974

Issue

Section

Original Article