Assessment of growth, biomass, and carbon sequestration potential of three urban tree species in Calabar
Keywords:
Biomass accumulation, urban forestry, allometric equations, carbon storage, ecological benefitsAbstract
Urban forests play a vital role in climate change mitigation by sequestering carbon and providing essential ecosystem services. This study assessed the growth, biomass accumulation, and carbon sequestration potential of three commonly planted urban tree species in Calabar, Nigeria: Azadirachta indica, Delonix regia, and Terminalia mantaly. A total of 100 trees per species were sampled across Calabar Municipality and Calabar South. Growth parameters, including diameter at breast height (DBH) and height, were recorded, and allometric equations were used to estimate aboveground biomass (AGB), aboveground carbon density (ACD), belowground carbon density (BCD), basal area (BA), and volume. Results indicated significant differences in DBH and height among species, with Terminalia mantaly exhibiting the highest values (DBH: 56.93 ± 3.42 cm; Height: 12.84 ± 0.26 m). However, AGB, ACD, BCD, BA, and volume did not differ significantly among species, despite Terminalia mantaly having the highest mean values. Strong positive correlations were observed between DBH and AGB (r = 0.87), ACD (r = 0.87), BCD (r = 0.87), BA (r = 0.89), and volume (r = 0.87), suggesting DBH as a key predictor of carbon sequestration potential. Conversely, tree height exhibited weak correlations with biomass parameters. The study highlights the comparable carbon sequestration potential of these species despite differences in growth traits, emphasizing the need for species-specific assessments to enhance urban forest planning. These findings contribute to sustainable urban management strategies aimed at maximizing the ecological benefits of urban trees.
References
Abich, A., Alemu, A., Gebremariam, Y., Mucheye, T., Gurebiyaw, K., & Kassie, M. (2021). Allometric models for predicting aboveground biomass of Combretum-Terminalia woodlands in Amhara, Northwest Ethiopia. Trees Forests and People, 5, 100122. https://doi.org/10.1016/j.tfp.2021.100122
Adefolalu, D. O. (1984). Weather hazards in Calabar ? Nigeria. GeoJournal, 9(4), 359–368. https://doi.org/10.1007/bf00697964
Afroonde, A., Kiani, B., & Attarod, P. (2018). Allometric equations for determining volume and biomass of Acer monspessulanum L. subsp. cinerascens multi-stemmed trees. Caspian Journal of Environmental Sciences, 16(2), 111–119. https://doi.org/10.22124/cjes.2018.2954
Agbelade, A. D., & Onyekwelu, J. C. (2020). Tree species diversity, volume yield, biomass and carbon sequestration in urban forests in two Nigerian cities. Urban Ecosystems, 23(5), 957–970. https://doi.org/10.1007/s11252-020-00994-4
Akter, R., Hasan, M. K., Roshni, N. A., Hemel, S. a. K., & Islam, M. T. (2025). Biomass accumulation and carbon stocks of soil and tree components of different agroforestry systems in tropical moist regions of Bangladesh. Trees Forests and People, 100793. https://doi.org/10.1016/j.tfp.2025.100793
Ariluoma, M., Ottelin, J., Hautamäki, R., Tuhkanen, E., & Mänttäri, M. (2020). Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki. Urban Forestry & Urban Greening, 57, 126939. https://doi.org/10.1016/j.ufug.2020.126939
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
Chen, Y., Rademacher, T., Fonti, P., Eckes‐Shephard, A. H., LeMoine, J. M., Fonti, M. V., Richardson, A. D., & Friend, A. D. (2022). Inter‐annual and inter‐species tree growth explained by phenology of xylogenesis. New Phytologist, 235(3), 939–952. https://doi.org/10.1111/nph.18195
Combaud, M., Cordonnier, T., Pérot, T., Morin, X., & Vallet, P. (2024). How dominant height responds to mixing species: Effect of traits and height difference between species. Forest Ecology and Management, 572, 122298. https://doi.org/10.1016/j.foreco.2024.122298
Czaja, M., Kołton, A., & Muras, P. (2020). The complex issue of Urban Trees—Stress factor accumulation and ecological service possibilities. Forests, 11(9), 932. https://doi.org/10.3390/f11090932
Egerer, M., Schmack, J. M., Vega, K., Barona, C. O., & Raum, S. (2024). The challenges of urban street trees and how to overcome them. Frontiers in Sustainable Cities, 6. https://doi.org/10.3389/frsc.2024.1394056
Fatimah, H., Farooq, S., Anwar, T., Qureshi, H., Hashmi, F., Ahmad, T., Ullah, N., Munazir, M., Naseem, M. T., & Soufan, W. (2024). Assessment of growth, biomass, and carbon sequestration potential of urban tree species in greenbelts. BMC Plant Biology, 24(1). https://doi.org/10.1186/s12870-024-05935-3
Forrester, D. I., Benneter, A., Bouriaud, O., & Bauhus, J. (2016). Diversity and competition influence tree allometric relationships – developing functions for mixed‐species forests. Journal of Ecology, 105(3), 761–774. https://doi.org/10.1111/1365-2745.12704
Guo, P., Zhao, X., Wang, X., Feng, Q., Li, X., & Tan, Y. (2024). Wood density and carbon concentration jointly drive wood carbon density of five Rosaceae tree species. Forests, 15(7), 1102. https://doi.org/10.3390/f15071102
Hoover, C. M., & Smith, J. E. (2023). Aboveground live tree carbon stock and change in forests of conterminous United States: influence of stand age. Carbon Balance and Management, 18(1). https://doi.org/10.1186/s13021-023-00227-z
Jiang, Y., & Wang, L. (2017). Pattern and control of biomass allocation across global forest ecosystems. Ecology and Evolution, 7(14), 5493–5501. https://doi.org/10.1002/ece3.3089
Kacprzak, M. J., Ellis, A., Fijałkowski, K., Kupich, I., Gryszpanowicz, P., Greenfield, E., & Nowak, D. (2024). Urban forest species selection for improvement of ecological benefits in Polish cities - The actual and forecast potential. Journal of Environmental Management, 366, 121732. https://doi.org/10.1016/j.jenvman.2024.121732
Kang, J., Zhang, B., Zhang, Q., Li, C., Ma, J., Yin, J., Yu, K., Hu, Y., & Bou-Zeid, E. (2025). Global urbanization indirectly ‘enhances’ the carbon sequestration capacity of urban vegetation. Geography and Sustainability, 100268. https://doi.org/10.1016/j.geosus.2025.100268
Looney, C. E., Previant, W. J., & Nagel, L. M. (2020). Variations in tree growth provide limited evidence of species mixture effects in Interior West USA mixed‐conifer forests. Journal of Ecology, 109(2), 952–965. https://doi.org/10.1111/1365-2745.13523
Miao, L., Wang, X., Yu, C., Ye, C., Yan, Y., & Wang, H. (2024). What factors control plant height? Journal of Integrative Agriculture, 23(6), 1803–1824. https://doi.org/10.1016/j.jia.2024.03.058
Mukuralinda, A., Kuyah, S., Ruzibiza, M., Ndoli, A., Nabahungu, N. L., & Muthuri, C. (2020). Allometric equations, wood density and partitioning of aboveground biomass in the arboretum of Ruhande, Rwanda. Trees Forests and People, 3, 100050. https://doi.org/10.1016/j.tfp.2020.100050
Nero, B., Kuusaana, E., Ahmed, A., & Campion, B. (2024). Carbon storage and tree species diversity of urban parks in Kumasi, Ghana. City and Environment Interactions, 24, 100156. https://doi.org/10.1016/j.cacint.2024.100156
Padmakumar, B., Sreekanth, N., Shanthiprabha, V., Paul, J., Sreedharan, K., Augustine, T., Jayasooryan, K., Rameshan, M., Mohan, M., Ramasamy, E., & Thomas, A. (2018). Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. iForest - Biogeosciences and Forestry, 11(4), 534–541. https://doi.org/10.3832/ifor2190-011
Patel, N., & Majumdar, A. (2011). Comparative assessment of the relationship of satellite data with the above ground biomass of Sal trees (Shorea robusta) determined from phenologically different time periods. Geo-spatial Information Science, 14(3), 177–183. https://doi.org/10.1007/s11806-011-0492-1
Peng, J., Jiang, Y., Shi, L., Xie, S., Zhang, X., Wu, P., Ma, X., & Li, M. (2025). Effects of Planting Density on Branch Development and Spatial Distribution in Two Elite Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) Clones. Forests, 16(1), 63. https://doi.org/10.3390/f16010063
Petrova, S., & Petkova, M. (2023). Plant Traits of Tilia tomentosa Moench, Fraxinus excelsior L., and Pinus nigra J.F.Arnold as a Proxy of Urbanization. Forests, 14(4), 800. https://doi.org/10.3390/f14040800
Pragasan, L. A. (2020). Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology Ecology and Landscapes, 6(1), 32–39. https://doi.org/10.1080/24749508.2020.1742510
Seiwa, K., Sasaki, T., & Masaka, K. (2023). Important role of a few large-diameter tree species in basal area and its increase in an old-growth deciduous broadleaf forest in Japan. Trees Forests and People, 13, 100421. https://doi.org/10.1016/j.tfp.2023.100421
Song, Z., Shi, P., Li, P., Li, Z., Niu, H., Zu, P., Cao, M., & Jia, Y. (2024). Effects of forest type on carbon storage in the hilly region of Loess Plateau, China. Frontiers in Forests and Global Change, 7. https://doi.org/10.3389/ffgc.2024.1349047
Steenberg, J. W. N., Ristow, M., Duinker, P. N., Lapointe-Elmrabti, L., MacDonald, J. D., Nowak, D. J., Pasher, J., Flemming, C., & Samson, C. (2023). A national assessment of urban forest carbon storage and sequestration in Canada. Carbon Balance and Management, 18(1). https://doi.org/10.1186/s13021-023-00230-4
Uchenna, U. P., Lancia, M., Viaroli, S., Ugbaja, A. N., Galluzzi, M., & Zheng, C. (2023). Groundwater sustainability in African Metropolises: Case study from Calabar, Nigeria. Journal of Hydrology Regional Studies, 45, 101314. https://doi.org/10.1016/j.ejrh.2023.101314
Upadhyay, J., & Khadka, S. (2024). Modelling Height-Diameter Relationship of <i>Pinus Roxburghii </i>in Nepal. American Journal of Biological and Environmental Statistics, 10(3), 49–59. https://doi.org/10.11648/j.ajbes.20241003.12
Yrttimaa, T., Junttila, S., Luoma, V., Pyörälä, J., Puttonen, E., Campos, M., Hölttä, T., & Vastaranta, M. (2023). Tree height and stem growth dynamics in a Scots pine dominated boreal forest. Trees Forests and People, 15, 100468. https://doi.org/10.1016/j.tfp.2023.100468
Zhou, X., Hu, C., & Wang, Z. (2023). Distribution of biomass and carbon content in estimation of carbon density for typical forests. Global Ecology and Conservation, 48, e02707. https://doi.org/10.1016/j.gecco.2023.e02707
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.