Habitat protection and planning for indicator species using MaxEnt model in Alborz


  • Sharareh Pourebrahim Associate Professor
  • Mehrdad Hadipour Faculty of Biological Science. Kharazmi University, Tehran, Iran
  • Zahra Emlaei Department of Environmental Science, Faculty of Natural Resources, University of Tehran. 14179-35840, Iran
  • Hamidreza Heidari Department of Environmental Science, Faculty of Natural Resources, University of Tehran. 14179-35840, Iran
  • Jit Ern Chen Jeffrey Sachs Center on Sustainable Development, Sunway University, 47500, Bandar Sunway, Petaling Jaya, Malaysia
  • Ali Najah Ahmed Department of Engineering, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Petaling Jaya, Malaysia




MaxEnt model, Ecological corridor, Habitat suitability


Predicting and mapping the appropriate habitat for endangered and threatened species is crucial for monitoring and restoring their dwindling populations in their natural surroundings. Additionally, it aids in the selection of suitable conservation sites and the effective management of their habitats. An ideal approach for habitat suitability modeling of species involves the utilization of MaxEnt machine learning techniques. The MaxEnt model was employed to forecast habitat suitability for key species, including Ursus arctos, Capra aegagrus, Ovis ammon, Lutra lutra, Martes foina, Lynx lynx, and Panthera pardus. Additionally, Linkage Pathways were employed to model ecological corridors connecting core habitats, enhancing our understanding of landscape connectivity for these species. The result showed that it is imperative to safeguard these vital areas situated in the northern and southern parts between the two prohibited hunting zones and the protected area. These areas provide the best routes for species to move between two habitats. However, settlements and rural areas pose a significant threat that can lead to the reduction or destruction of these communication areas. Therefore, protecting these regions should be a top priority.


Atwood, T.C., Young, J.K., Beckmann, J.P., Breck, S.W., Fike, J., Rhodes, O.E., & Bristow, K.D. (2011). Modeling connectivity of black bears in a desert sky island archipelago. Biological Conservation, 144, 2851–2862.

Hoang, T.H., Lock, K., Mouton, A., & Goethals, P.L.M. (2010). Application of classification trees and support vector machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecological Informatics, 5, 140–146.

Huang, Z.H., Zhou, X., Zhang, X.R., Pu, Z., & Xing, S.H. (2018). Suitability assessments of potential distribution areas for Amur corktree in mainland China. Acta Ecologica Sinica, 38, 7469–7476.

Huijser, M.P., Fairbank, E.R., Camel-Means, W., Graham, J., Watson, V., Basting, P., & Becker, D. (2016). Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biological Conservation, 197, 61–68.

Javadnia, E., Mobasheri, M.R., & Kamali, G.A. (2009). MODIS NDVI quality enhancement using ASTER images.

Jayasinghe, S.L., & Kumar, L. (2019). Modeling the climate suitability of tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka in response to current and future climate change scenarios. Agricultural and Forest Meteorology, 272, 102–117.

Jin, L.R., Sun, K.P., He, H.S., & Zhou, Y.F. (2008). Research advances in habitat suitability index model. Chinese Journal of Ecology, 27, 841–846.

Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150.

Kolecka, N., & Kozak, J. (2014). Assessment of the accuracy of SRTM C-and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure and Applied Geophysics, 171, 897-912.

Ledesma, A., Gens, A., & Alonso, E.E. (1996). Estimation of parameters in geotechnical backanalysis—I. Maximum likelihood approach. Computers and Geotechnics, 18(1), 1-27.

Lobo, J.M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151.

McDonald, R.I., Kareiva, P., & Forman, R.T. (2008). The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological Conservation, 141(6), 1695-1703.

Mesejo, D., Miranda, J., Barranco, D., Del Río, J.A., Caballero, J.M., & Martínez-Ferri, E. (2018). Predicting suitable habitat for the Mediterranean hackberry in the Iberian Peninsula under climate change conditions. Ecological Indicators, 85, 1082–1090.

Mondal, I., & Tatem, A.J. (2012). Spatial poverty, fuelwood use, and respiratory disease in developing countries: A nexus approach. Population and Environment, 34, 487–506.

Muñoz-Mas, R., Fukuda, S., Pórtoles, J., & Martínez-Capel, F. (2018). Revisiting probabilistic neural networks: A comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 43, 24–37.

Nezami, B., & Farhadinia, M. S. (2011). Litter sizes of brown bears in the Central Alborz Protected Area, Iran. Ursus, 22(2), 167-171.

Pan, W., Mi, C., & Gong, Y. (2019). Application of MaxEnt modeling in predicting potential distribution of Xanthoceras sorbifolia in China. Scientia Silvae Sinicae, 55, 72-80.

Park, D. S., Razafindratsima, O. H., & Brown, K. A. (2017). A tale of two villages: The role of socio-economic differentiation in climate change activities in Madagascar. Global Environmental Change, 47, 20-29.

Park, D. S., Talbert, M., López-Baucells, A., Siles, G., Park, A., Jones, G., Waldien, D. L., Presley, S. J., Samaniego-Herrera, A., & Sosa, R. A., et al. (2020). Species-environment associations influence the probability of presence in a community of Neotropical bats. Ecological Applications, 30, e02022.

Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72.

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893.

Poudel, R. C., Mörtberg, U. M., Sharma, M., & Tiwari, A. (2013). Land cover change and its relation with population dynamics in the Koshi River Basin, Nepal. Applied Geography, 41, 23-34.

Pradervand, J. N., Dubuis, A., Pellissier, L., Guisan, A., & Randin, C. (2014). Very high-resolution environmental predictors in species distribution models: Moving beyond topography? Progress in Physical Geography, 38, 79-96.

Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241-262.

Sanderson, J., Da Fonseca, G. A., Galindo-Leal, C., Alger, K., Inchausty, V. H., Morrison, K., & Rylands, A. (2006). Escaping the minimalist trap: Design and implementation of large-scale biodiversity corridors. Conservation Biology Series-Cambridge, 14, 620.

Schmidt, H., Radinger, J., Teschlade, D., & Stoll, S. (2020). The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecological Modelling, 418, 108937.

Seiler, A., Cederlund, G., & Ringaby, E. (2003). The barrier effect of highway E4 on migratory moose (Alces alces) in the High Coast area, Sweden. In Proceedings of the IENE 2003 International Conference on “Habitat Fragmentation due to Transport Infrastructure,” Brussels, Belgium, 13–15 November 2003; pp. 1-18.

Sharma, S., Arunachalam, K., Bhavsa, D., & Kala, R. (2018). Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 99-105.

Simard, M., Zhang, K., Rivera-Monroy, V. H., Ross, M. S., Ruiz, P. L., Castañeda-Moya, E., Twilley, R. R., Singh, H., Kumar, N., & Kumar, M., et al. (2020). Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range-restricted vulnerable bird species of the Himalayan region, in response to climate change. Climate Risk Management, 29, 100241.

Struebig, M. J., Wilting, A., Gaveau, D. L., Meijaard, E., Smith, R. J., Abdullah, T., Abram, N., Alfred, R., Ancrenaz, M., Augeri, D. M., & Belant, J. L. (2015). Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Current Biology, 25(3), 372-378.

Tan, M. L., Ramli, H. P., & Tam, T. H. (2018). Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management, 32(14), 4591-4606.

United Nations. (2018). World Urbanization Prospects: The 2018 Revision; United Nations Department of Economic and Social Affairs: New York, NY, USA.

Wang, G., Wang, C., Guo, Z., Dai, L., Wu, Y., Liu, H., Li, Y., Chen, H., Zhang, Y., Zhao, Y., & Cheng, H. (2020). Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered red-crowned crane. Ecological Indicators, 116, 106472.

Wang, Y. S., Xie, B. Y., Wan, F. H., Xiao, Q. M., & Dai, L. Y. (2007). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372.

Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108(3), 290-310.

Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342.

Wei, B., Wang, R., Hou, K., Wang, X., & Wu, W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 16, e00477.

Yi, Y. J., Cheng, X., Yang, Z. F., & Zhang, S. H. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92, 260-269.

Yu, J., Fu, M. X., Song, X. Q., Gao, F., Yang, B., & Li, S. Q. (2020). MaxEnt modeling-based habitat suitability assessment of Macaca thibetana in Daxiangling Nature Reserve, Sichuan province. Journal of Sichuan Forestry Science and Technology, 41, 45-50.

Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., & Tao, J. (2019). Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics, 50, 62-67.

Zhen, J., Wang, X., Meng, Q., Song, J., Liao, Y., Xiang, B., Guo, H., Liu, C., Yang, R., & Luo, L. (2018). Fine-scale evaluation of giant panda habitats and countermeasures against the future impacts of climate change and human disturbance (2015–2050): A case study in Ya’an, China. Sustainability, 10, 1081.




How to Cite

Pourebrahim, S., Hadipour, M., Emlaei, Z., Heidari, H., Chen, J. E., & Najah Ahmed, A. (2024). Habitat protection and planning for indicator species using MaxEnt model in Alborz . Journal of Wildlife and Biodiversity, 8(3), 325–339. https://doi.org/10.5281/zenodo.11917250