Preliminary genetic documentation of snake species through shed skin from Uttarakhand, India: A non-invasive genetic sampling approach ‎

Authors

  • Ankita Rajpoot Maaty Biodiversity Conservation & Societal Research Organization, Kaulagarh, Dehradun- 248003 Uttarakhand, India
  • Ved Prakash Kumar Maaty Biodiversity Conservation & Societal Research Organization, Kaulagarh, Dehradun- 248003 Uttarakhand, India
  • Archana Bahuguna Molecular Systematics laboratory, Zoological Survey of India, NRC, 218, Kaulagarh Road, Dehradun-248195, Uttarakhand, India
  • Sargam Singh Rasaily Uttarakhand Biodiversity Board, 423, Indira Nagar Colony, Dehradun-248006 Uttarakhand, India

DOI:

https://doi.org/10.22120/jwb.2020.127147.1138

Keywords:

Mitochondrial DNA and conservation, non-invasive genetic, snakes, shed skin

Abstract

Non-invasive sampling is one of the most authentic techniques for the genetic study of endangered and rare animal species. In the present study based on non-invasive samples, we give the preliminary genetic documentation of snake species by using cytochrome b (Cyt b) and cytochrome c oxidase subunit I (COI) universal mitochondrial primers from Uttarakhand (UK), India. We sampled n=11 shed skin of unknown snake species from four different locations in Uttarakhand, India. The success rate of genomic DNA isolation, PCR amplification, and sequencing from collected samples was 100%. Afterward, in the genetics analysis, 8 out of 11 samples matched with Least Concern ver3.1 Rat snake species, two samples paired with Checkered keelback snake, and one sample matched with Indian cobra. Subsequently, 149 (Cyt b) and 207 (COI) species-specific fixed SNPs were observed. The obtained interspecific sequences divergences based on two mitochondrial loci among three snake species also show the high variability in the Uttarakhand snake population. The current study based on the non-invasive genetic sampling approach showed its importance in biodiversity conservation, especially those species which are under the endangered and critically endangered category. The genetic reference database of snake species helpful in species management, population, evolutionary-based study, and wildlife forensic in the future.

References

Alibardi, L. (2003). Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Journal of Experimental Zoology Part B Molecular and Developmental Evolution, 298 (1), 12–41. https://doi.org/10.1002/jez.b.24

Alibardi, L. (2006). Structural and immunocytochemical characterization of keratinization in the vertebrate epidermis and epidermal derivatives. International Review of Cytology, 253, 177–259. https://doi.org/10.1016/S0074-7696(06)53005-0

Boulanger, J., Mclellan, B.N., Woods, J.G., Progtor, M.F., & Strobeck, C. (2004). Sampling design and bias in DNA-based capture-mark-recapture population and density estimates of grizzly bears. Journal of Wildlife Management, 68 (3), 457-469. https://doi.org/10.2193/0022-541X(2004)068[0457:SDABID]2.0.CO;2

Bonin, A., Bellemain, E., Desen, P.B., Pom-Panon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13, 3261-3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x

Bahuguna, A. (2010). Reptilia. In: Fauna of Uttarakhand. (Part 1) Vertebrates. State Fauna Series 18. Editor, Director, Zoological Survey of India, M-Block, New Alipore, Kolkata 700 053. Zoological Survey of India, Kolkata, India. 621 p. Available: http://faunaofindia.nic.in/PDFVolumes/sfs/062/index pdf [Accessed: 31 January 2020].

Caroline, S., Jaret, D., Lei, X., & Kristin, R. (2019). Using Noninvasive Genetic Sampling to Survey Rare Butterfly Populations. Insects, 10 (10), 311.

https://doi.org/10.3390/insects10100311

Carroll, E.L., Bruford, M.W., DeWoody, J.A., Leroy, G., Strand, A., Waits, L., & Wang, J. (2018). Genetic and genomic monitoring with minimally invasive sampling methods. Evolutionary Applications, 11, 1094–1119.

Dubey, B., Meganathan, P.R., & Haque, I. (2011). DNA Minibarcoding: An approach for forensic identification of some endangered Indian snake species. Forensic Science International Genetic, 5 (3), 181-4. https://doi.org/10.1016/j.fsigen.2010.03.001

Eggert, L.S., Eggert, J.A., & Woodruff, D.S. (2003). Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Molecular Ecology, 12 (6), 1389-1402. https://doi.org/10.1046/j.1365-294x.2003.01822.x

Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.

Fetzner, J. (1999). Extracting high-quality DNA from shed reptiles skins: a simplified method. BioTechniques, 26 (6), 1052–1054. https://doi.org/10.2144/99266bm09

Hryncewicz-Gwozdz, A., Jagielski, T., Dobrowolska, A., Szepietowski, C., & Baran, E. (2011). Identification and differentiation of Trichophyton rubrum clinical isolates using PCR-RFLP and RAPD methods. European Journal of Clinical Microbiology & Infectious Diseases, 30 (6), 727-731. https://doi.org/10.1007/s10096-010-1144-3

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270 (1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 41, 95–98.

Heise, P.J., Maxson, L.R., Dowling, H.G., & Hedges, S.B. (1995). Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Molecular Biology and Evolution, 12 (2), 259- 265.

https://doi.org/10.1093/oxfordjournals.molbev.a040202

Hoss, M., Kohn, M., Paabo S., Knauer, F., & Schroder, W. (1992). Excrement analysis by PCR. Nature, 359 (6392). https://doi.org/10.1038/359199a0

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870-1874. https://doi.org/10.1093/molbev/msw054

Kumar V.P., Kumar D., & Goyal S.P. (2014). Wildlife DNA forensic in curbing illegal wildlife trade: species identification from seizures. International Journal of Forensic Science & Pathology, 2 (5), 38–42. https://dx.doi.org/10.19070/2332-287X-1400012

Koch, H. (2010). Combining morphology and DNA barcoding resolves the taxonomy of Western Malagasy Liotrigona Moure, 1961. African Invertebrates, 51 (2), 413–421.

Kent, R. J., Deus, S., Williams, M., & Savage, H.M. (2010). Development of a multiplexed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay to identify common members of the subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala. American Journal of Tropical Medicine and Hygiene, 83 (2), 285-291. https://doi.org/10.4269/ajtmh.2010.10-0077

Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences U.S.A., 102 (23), 8369–74. https://doi.org/10.1073/pnas.0503123102

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581

Lobo, D., Godinho R., Álvares F., López-Bao, J. V., & Rodríguez A. (2015). A New Method for Noninvasive Genetic Sampling of Saliva in Ecological Research. PLoS ONE, 10 (10), e0139765. https://doi.org/10.1371/journal.pone.0139765

Landmann, L. (1986). The skin of Reptiles: epidermis and dermis In Biology of the Integument, Vertebrate (edsBereither-Hahn J, Matoltsy G, Sylvia-Richards K), pp. 150–187. Berlin-Heidelberg- New York: Springer Verlag.

Mills, L.C., Citta, J.J., Lair, K.P., Schwartz, M.K., & Tallmon, D.A. (2000). Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls. Ecological Applications, 10, 283–294.

https://doi.org/10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2

Mckelvey, K.S., & Schwartz, M.K. (2010). Genetic errors associated with population estimation using noninvasive molecular tagging: problems and new solutions. Journal of Wildlife Management, 68, 439-448. https://doi.org/10.2193/0022-541X(2004)068[0439:GEAWPE]2.0.CO;2

Maderson, P.F.A., Rabinowitz, T., Tandler, B., & Alibardi, L. (1998). Ultrastructural contributions to an understanding of the cellular mechanisms involved in lizard skin shedding with comments on the function and evolution of a unique Lepido saurian phenomenon. Journal of Morphology, 236(1),1–24.

https://doi.org/10.1002/(SICI)1097-4687(199804)236:13.0.CO;2-B

Morin, P.A., & Woodruff, D.S. (1992). Paternity exclusion using multiple hypervariable microsatellite loci amplified from nuclear DNA of hair cells. Pp 63-81 in R. D. Martin, A. F. Dixson, and E. J. Wickings, editors. Paternity in primates: genetic tests and theories. Karger, Basel, Switzerland.

Maderson, P.F. (1985a). Some developmental problems of the reptilian integument. In Biology of Reptilia: Development (EdsGans C, Billett F, Maderson PF), pp. 525–598. New York: John Wiley & Sons.

Maderson, P.F. (1985b).A Histological changes in the epidermis of snakes during the sloughing cycle. Journsl of Zoology 146:98–113.

Piggott, M.P., & Taylor, A.C. (2003). Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildlife Research, 30 (1), 1-13. https://doi.org/10.1071/wr02077

Paetkau, D. (2003). An empirical exploration of data quality in DNA-based population inventories. Molecular Ecology, 12 (6), 1375-1387. https://doi.org/10.1046/j.1365-294X.2003.01820.x

Rajpoot, A., Kumar, V.P., Bahuguna, A., & Kumar D. (2017). Araniellacucurbitina: the first molecular evidence of a Palearctic species of genus Araniella inhabiting India. Mitochondrial DNA Part A, 28, 1-9, https://doi.org/10.1080/24701394.2017.1373105

Rajpoot, A., Kumar, V.P., Bahuguna, A., & Kumar D. (2016). Forensically informative nucleotide sequencing (FINS) for the first time authentication of Indian Varanus species: implication in wildlife forensics and conservation, Mitochondrial DNA Part A, 26, 1-9, https://doi.org/10.1080/24701394.2016.1202943

Sundriyal, M., & Sharma, B. (2016). Status of Biodiversity in Central Himalaya."Applied Ecology and Environmental Sciences, 4 (2), 37-43. https://doi.org/10.12691/aees-4-2-1

Saitou, N., & Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406–425.

https://doi.org/10.1093/oxfordjournals.molbev.a040454

Taberlet, P., & Bouvet, J. (1992). Bear conservation genetics. Nature, 358, 1-97.

https://doi.org/10.1038/358197a0

Taberlet, P., Waits, L.P., & Luikart, G. (1999). Noninvasive genetic sampling: look before you leap. Trean Ecology and Evolution, 14 (8), 323-327.

https://doi.org/10.1016/s0169-5347(99)01637-7

Verma, S.K., & Singh, L. (2003).Novel universal primers establish identify of an enormous number of animal species for forensic application. Molecular Ecology Notes 3(1), 28-31.

https://doi.org/10.1046/j.1471-8286.2003.00340.x

Waits, L. P. (2004). Using noninvasive genetic sampling to detect and estimate abundance of rare wildlife species. Pages 211-228, by W. L. Thomas, editor. Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Island Press, Washington, D. C., USA.

Wong, K.L., Wang, J., But, P.P.H., & Shaw, P.C. (2004). Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Science International, 139 (1), 49-55. https://doi.org/10.1016/j.forsciint.2003.09.015

Downloads

Published

2021-01-30

How to Cite

Rajpoot, A., Kumar, V. P., Bahuguna, A., & Rasaily, S. S. (2021). Preliminary genetic documentation of snake species through shed skin from Uttarakhand, India: A non-invasive genetic sampling approach ‎. Journal of Wildlife and Biodiversity, 5(1), 81–91. https://doi.org/10.22120/jwb.2020.127147.1138