Role of interleukin 18 and macrophage inflammatory protein in Iraqi patients with urolithiasis, An Immunopathological study

Authors

  • Suzan Radhi Department of Medical Laboratory Techniques, Al Mustaqbal University College, Babylon province, Hilla, Iraq.
  • Ifad Kerim Al-shibly
  • Wadhah A.Al-marzooq

DOI:

https://doi.org/10.5281/zenodo.10251866

Keywords:

Urolithiasis, ELISA, IL18, MIP

Abstract

The aim of the current investigation was to assess the IL18 and MIP beta levels in serum patients with urothalisis. Sixty serum samples were collected from the infected people with urothalisis and twenty-eight serum samples from healthy who reviewed Al-Hilla teaching hospital and Imam Sadiq teaching hospital. Serum levels of IL18 and MIP were measured by “enzyme-linked immunosorbent assay (ELISA)” which applies a technique called a quantitative sandwich immunoassay using Peprotech (USA) kit. The concentration of cytokines revealed in this study IL-18 showed an increase in concentration and reached 46.146 pg/ml compared to the control group. The concentration of MIP beta showed an increase in urothalisis patients than in controls and reach  195.566 with significance (P < 0.05). We conclude that the concentration of IL18 and MIP were high in patients than in healthy, and the correlation between MIP beta and IL18 was negative and no significant between them.

References

Akkaif, M. A., Bitar, A. N., Al-Kaif, L. A. I. K., Daud, N. A. A., Sha’aban, A., Noor, D. A. M., Abd Aziz, F., Cesaro, A., SK Abdul Kader, M. A., & Abdul Wahab, M. J. (2022). The management of myocardial injury related to SARS-CoV-2 pneumonia. Journal of Cardiovascular Development and Disease, 9(9), 307.

Akkaif, M. A., Daud, N. A. A., Sha’aban, A., Ng, M. L., Abdul Kader, M. A. S., Noor, D. A. M., & Ibrahim, B. (2021). The role of genetic polymorphism and other factors on clopidogrel resistance (CR) in an Asian population with coronary heart disease (CHD). Molecules, 26(7), 1987.

Akkaif, M. A., Ng, M. L., SK Abdul Kader, M. A., Daud, N. A. A., Sha’aban, A., & Ibrahim, B. (2021). A review of the effects of ticagrelor on adenosine concentration and its clinical significance. Pharmacological Reports, 73(6), 1551–1564.

Akkaif, M. A., Sha’aban, A., Cesaro, A., Jaber, A. A. S., Vergara, A., Yunusa, I., Jatau, A. I., Mohammed, M., Govindasamy, G. S., & Al-Mansoub, M. A. (2022). The impact of SARS-CoV-2 treatment on the cardiovascular system: An updated review. Inflammopharmacology, 30(4), 1143–1151.

Akkaif, M. A., Sha’aban, A., Daud, N. A. A., Yunusa, I., Ng, M. L., Sk Abdul Kader, M. A., Noor, D. A. M., & Ibrahim, B. (2021). Coronary heart disease (CHD) in elderly patients: which drug to choose, Ticagrelor and Clopidogrel? a systematic review and meta-analysis of randomized controlled trials. Journal of Cardiovascular Development and Disease, 8(10), 123.

Al-Shibly, I. K., Alhamdany, M. H., Al-Kaif, R. A. I., & Al-Kaif, L. A. (2019). Immunological Base Behind the Increased Susceptibility of Diabetic Patients for Infections. Indian J. Public Health, 10, 3047–3051.

Alelign, T., & Petros, B. (2018). Kidney stone disease: an update on current concepts. Advances in Urology, 2018.

Allen, S. J., Crown, S. E., & Handel, T. M. (2007). Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol., 25, 787–820.

Bird, V. Y., & Khan, S. R. (2017). How do stones form? Is unification of theories on stone formation possible? Archivos Espanoles de Urologia, 70(1), 12.

Bishop, K., Momah, T., & Ricks, J. (2020). Nephrolithiasis. Primary Care: Clinics in Office Practice, 47(4), 661–671.

Deshmane, S. L., Kremlev, S., Amini, S., & Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of Interferon & Cytokine Research, 29(6), 313–326.

Dinarello, C. A., Novick, D., Kim, S., & Kaplanski, G. (2013). Interleukin-18 and IL-18 binding protein. Frontiers in Immunology, 4, 289.

Ferraro, P. M., Marano, R., Primiano, A., Gervasoni, J., Bargagli, M., Rovere, G., Bassi, P. F., & Gambaro, G. (2019). Stone composition and vascular calcifications in patients with nephrolithiasis. Journal of Nephrology, 32, 589–594.

Hirooka, Y., & Nozaki, Y. (2021). Interleukin-18 in inflammatory kidney disease. Frontiers in Medicine, 8, 639103.

Kader, M. A., Almahdawi, Z. M. M., & Raja, F. F. (2019). Evaluation of levels of cystatin C and interleukin 18 as a modern biomarkers of acute kidney injury (AKI) in kidney stone patients. Plant Arch, 19(1), 418–420.

Kadoya, H., Satoh, M., Sasaki, T., Taniguchi, S., Takahashi, M., & Kashihara, N. (2015). Excess aldosterone is a critical danger signal for inflammasome activation in the development of renal fibrosis in mice. The FASEB Journal, 29(9), 3899–3910.

Kok, D. J., Boellaard, W., Ridwan, Y., & Levchenko, V. A. (2017). Timelines of the “free-particle” and “fixed-particle” models of stone-formation: theoretical and experimental investigations. Urolithiasis, 45, 33–41.

Komada, T., Chung, H., Lau, A., Platnich, J. M., Beck, P. L., Benediktsson, H., Duff, H. J., Jenne, C. N., & Muruve, D. A. (2018). Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. Journal of the American Society of Nephrology: JASN, 29(4), 1165.

Kusumi, K., Ketz, J., Saxena, V., Spencer, J. D., Safadi, F., & Schwaderer, A. (2019). Adolescents with urinary stones have elevated urine levels of inflammatory mediators. Urolithiasis, 47, 461–466.

Mansour, S. G., Puthumana, J., Coca, S. G., Gentry, M., & Parikh, C. R. (2017). Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC Nephrology, 18, 1–13.

Maurer, M., & Von Stebut, E. (2004). Macrophage inflammatory protein-1. The International Journal of Biochemistry & Cell Biology, 36(10), 1882–1886.

Menten, P., Wuyts, A., & Van Damme, J. (2002). Macrophage inflammatory protein-1. Cytokine & Growth Factor Reviews, 13(6), 455–481.

Nisula, S. (2014). Incidence, biomarkers, and outcome of acute kidney injury in critically ill adults.

O’Kell, A. L., Grant, D. C., & Khan, S. R. (2017). Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis, 45(4), 329–336.

O’Kell, A. L., Lovett, A. C., Canales, B. K., Gower, L. B., & Khan, S. R. (2019). Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall’s plaque. Urolithiasis, 47, 335–346.

Peng, J.-P., & Zheng, H. (2017). Kidney stones may increase the risk of coronary heart disease and stroke: A PRISMA-Compliant meta-analysis. Medicine, 96(34).

Ramaswamy, K., Killilea, D. W., Kapahi, P., Kahn, A. J., Chi, T., & Stoller, M. L. (2015). The elementome of calcium-based urinary stones and its role in urolithiasis. Nature Reviews Urology, 12(10), 543–557.

Sassanarakkit, S., Peerapen, P., & Thongboonkerd, V. (2020). StoneMod: a database for kidney stone modulatory proteins with experimental evidence. Scientific Reports, 10(1), 15109.

Satirapoj, B. (2018). Tubulointerstitial biomarkers for diabetic nephropathy. Journal of Diabetes Research, 2018.

Shi, B., Ni, Z., Cao, L., Zhou, M., Mou, S., Wang, Q., Zhang, M., Fang, W., Yan, Y., & Qian, J. (2012). Serum IL-18 is closely associated with renal tubulointerstitial injury and predicts renal prognosis in IgA nephropathy. Mediators of Inflammation, 2012.

Shirasuna, K., Karasawa, T., Usui, F., Kobayashi, M., Komada, T., Kimura, H., Kawashima, A., Ohkuchi, A., Taniguchi, S., & Takahashi, M. (2015). NLRP3 deficiency improves angiotensin II-induced hypertension but not fetal growth restriction during pregnancy. Endocrinology, 156(11), 4281–4292.

Downloads

Published

2023-12-03

How to Cite

Radhi, S., Kerim Al-shibly, I. ., & A.Al-marzooq, W. . (2023). Role of interleukin 18 and macrophage inflammatory protein in Iraqi patients with urolithiasis, An Immunopathological study. Journal of Wildlife and Biodiversity, 7(Special Issue), 499–506. https://doi.org/10.5281/zenodo.10251866