The Quaternary Range Dynamics of the Dwarf Lizard, Parvilacerta parva (Boulenger, 1887) (Squamata, Lacertidae) in the Anatolian Peninsula

Authors

  • Mehmet Kürşat Şahin Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University
  • Yusuf Kumlutaş Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Buca, Turkey
  • Alexey Yanchukov Department of Biology, Faculty of Arts and Sciences, Bülent Ecevit University, Zonguldak, Turkey
  • Ortaç Çetintaş Department of Biology, Faculty of Arts and Sciences, Bülent Ecevit University, Zonguldak, Turkey
  • Kamil Candan Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Buca, Turkey
  • Cetin Ilgaz Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Buca, Turkey
  • Zafer Ayaş Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey

DOI:

https://doi.org/10.22120/jwb.2021.540551.1259

Keywords:

last glacial maximum, last interglacial, ecological niche modelling, species distribution, Turkey

Abstract

The dwarf lizard, Parvilacerta parva, is a characteristic member of the steppe biome in Irano - Anatolian biological hotspot. While this lizard has been included in local faunistic surveys and its morphological variation was addressed, no targeted study has been performed on the ecology and distribution of the species. Here we investigate the range dynamics of dwarf lizard during recent glacial and interglacial periods. We looked at the effects of climatic oscillations on species distribution at Present, Last Glacial Maximum (LGM), and Last Interglacial (LIG) periods using ecological niche modelling (ENM), based on our own fieldwork and literature data. The model results suggest that the range of dwarf lizards contracted during the LIG and expanded during the LGM, opposite to the pattern observed in many other temperate reptiles. During the LIG, distribution of the dwarf lizards had been restricted to the mountainous steppe habitats in Northeastern Anatolia, but during the LGM it expanded to the west by including the new steppe habitats in Sultan, Emir and Murat mountains and adjacent areas. Climatic factors had a strong influence on shaping the spatiotemporal habitat. The Anatolian Biogeographic Region overlaps with Irano - Anatolian biodiversity hotspot, reflecting remarkable species richness in this area. However, faunal elements of the hotspots are under threat due to not only global climate change, but also anthropogenic pressures, such as habitat loss and overgrazing. Our results suggest that the dwarf lizards have a potential as indicators for tracking the local effects of global climate change as well as human induced degradation of the steppe habitat.

References

Ambarlı, D., & Bilgin, C. C. (2014). Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppes. Agriculture, Ecosystems & Environment, 182, 37–46.

Ambarlı, D., Zeydanlı, U. S., Balkız, Ö., Aslan, S., Karaçetin, E., Sözen, M., Ilgaz, Ç., Ergen, A. G., Lise, Y., & Çağlayan, S. D. (2016). An overview of biodiversity and conservation status of steppes of the Anatolian Biogeographical Region. Biodiversity and Conservation, 25(12), 2491–2519.

Arakelyan, M. S., Danielyan, F. D., Corti, C., Sindaco, R., & Leviton, A. E. (2011). “Herpetofauna of Armenia and Nagorno-Karabakh. Society for the Study of Amphibians and Reptiles (SSAR).

Ashraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: A case study of Olea spp. In Asia. Ecosphere, 8(5), e01825.

Atagün, F. (1984). Türkiye’de Lacerta parva (Reptilia, Lacertidae)’nın Taksonomik Araştırılması. Ege Üniversitesi (in Turkish).

Atalay, İ. (2020). Paleoenvironmental conditions of the Late Pleistocene and early Holocene in Anatolia, Turkey. In Quaternary deserts and climatic change (pp. 227–237). CRC Press.

Baran, İ., Yilmaz, I., Kete, R., Kumlutas, Y., & Durmus, S. H. (1992). Orta Karadeniz Bölgesinin Herpetofaunasi. Turkish Journal of Zoology, 16(3), 275–288.

Basoğlu, M., & Baran, I. (1977). Türkiye Sürüngenleri, Kısım I, Kaplumbağa ve Kertenkeleler [Turkish Reptiles. Part I. Turtles and Lizards]. Ege Üniversitesi Kitaplar Serisi, 76, 1–219 (in Turkish).

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214.

Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F., & Mesdaghi, M. (2020). Climate change influences on the potential distribution of Dianthus polylepis Bien. Ex Boiss.(Caryophyllaceae), an endemic species in the Irano-Turanian region. PloS One, 15(8), e0237527.

Brown, J. L. (2014). SDM toolbox: A python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.

Chen, L., Li, H. E., Zhang, P., Zhao, X., Zhou, L., Liu, T., Hu, H., Bai, Y., Shen, H., & Fang, J. (2015). Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30(9), 1627–1641.

Conradi, T., Van Meerbeek, K., Ordonez, A., & Svenning, J.-C. (2020). Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecology Letters, 23(5), 800–810.

Corine Land Cover (2018), Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 Retrieved August 20, 2020

Cremene, C., Groza, G., Rakosy, L., Schileyko, A. A., Baur, A., Erhardt, A., & Baur, B. (2005). Alterations of steppe‐like grasslands in Eastern Europe: A threat to regional biodiversity hotspots. Conservation Biology, 19(5), 1606–1618.

Dengler, J., Janišová, M., Török, P., & Wellstein, C. (2014). Biodiversity of Palaearctic grasslands: A synthesis. Agriculture, Ecosystems & Environment, 182, 1–14.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57.

Fekete, G., Molnár, Z., Magyari, E., Somodi, I., & Varga, Z. (2014). A new framework for understanding Pannonian vegetation patterns: Regularities, deviations and uniqueness. Community Ecology, 15(1), 12–26.

Fırıncıoğlu, H. K., Seefeldt, S. S., Şahin, B., & Vural, M. (2009). Assessment of grazing effect on sheep fescue (Festuca valesiaca) dominated steppe rangelands, in the semi-arid Central Anatolian region of Turkey. Journal of Arid Environments, 73(12), 1149–1157.

Gherghel, I. (2021). How Ecology and Evolution Shape Species Distributions and Ecological Interactions Across Time and Space. Case Western Reserve University.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

Gül, S., Kumlutaş, Y., & Ilgaz, Ç. (2018). Potential distribution under different climatic scenarios of climate change of the vulnerable Caucasian salamander (Mertensiella caucasica): A case study of the Caucasus Hotspot. Biologia, 73(2), 175–184.

Gür, H. (2013). The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: Range expansion during the glacial periods? Biological Journal of the Linnean Society, 109(1), 19–32.

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907.

Hewitt, G. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68(1–2), 87–112.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965–1978.

Horreo, J. L., Pelaez, M. L., Suárez, T., Breedveld, M. C., Heulin, B., Surget‐Groba, Y., Oksanen, T. A., & Fitze, P. S. (2018). Phylogeography, evolutionary history and effects of glaciations in a species (Zootoca vivipara) inhabiting multiple biogeographic regions. Journal of Biogeography, 45(7), 1616–1627.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–457.

IPCC. (2007). Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers and Technical Summary and Frequently Asked Questions. Cambridge University Press.

Janišová, M., Bartha, S., Kiehl, K., & Dengler, J. (2011). Advances in the conservation of dry grasslands: Introduction to contributions from the seventh European Dry Grassland Meeting. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology, 145(3), 507–513.

Kajtoch, Ł., Cieślak, E., Varga, Z., Paul, W., Mazur, M. A., Sramkó, G., & Kubisz, D. (2016). Phylogeographic patterns of steppe species in Eastern Central Europe: A review and the implications for conservation. Biodiversity and Conservation, 25(12), 2309–2339.

Kışlalıoğlu, M., Berkes, F., (1987). Biyolojik Çeşitlilik. Türkiye Çevre Sorunları Vakfı, Ankara (in Turkish).

Korkmaz, E. M., Lunt, D. H., Çıplak, B., Değerli, N., & Başıbüyük, H. H. (2014). The contribution of Anatolia to European phylogeography: The centre of origin of the meadow grasshopper, Chorthippus parallelus. Journal of Biogeography, 41(9), 1793–1805.

Kornilios, P., Ilgaz, Ç., Kumlutaş, Y., Lymberakis, P., Moravec, J., Sindaco, R., Rastegar-Pouyani, N., Afroosheh, M., Giokas, S., & Fraguedakis-Tsolis, S. (2012). Neogene climatic oscillations shape the biogeography and evolutionary history of the Eurasian blindsnake. Molecular Phylogenetics and Evolution, 62(3), 856–873.

Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution, 23(3), 141–148.

Kumlutaş, Y., Durmuş, S. H., Kaska, Y., Öz, M., & Tunç, M. R. (2004). A morphological and taxonomic study on Lacerta parva Boulenger, 1887 (Sauria: Lacertidae) from West Taurus, Turkey. Asiatic Herpetological Research, 10, 202–207.

Kurnaz, M. (2020). Species list of Amphibians and Reptiles from Turkey. Journal of Animal Diversity, 2(4), 10–32.

Kurnaz, M., Gül, S., Bülbül, U., & Kutrup, B. (2016). The potential distribution of Darevskia derjugini (Nikolsky, 1898) with new locality records from Turkey. Developments in Science and Engineering, St. Kliment Ohridski Univ. Press, Sofia, 189–195.

Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In Biodiversity hotspots (pp. 3–22). Springer.

Mülayim, A., Tok, C. V., & Ayaz, D. (2001). Beyşehir (Konya) Civarından Toplanan Lacerta parva Boulenger, 1887 (Sauria: Lacertidae) Örnekleri Üzerinde Morfolojik Bir Çalışma, Anadolu University Journal of Science and Technology, 2(2), 345-349 .

Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18(5), 521–531.

Perktaş, U., Gür, H., & Ada, E. (2015a). Historical demography of the Eurasian green woodpecker: Integrating phylogeography and ecological niche modelling to test glacial refugia hypothesis. Folia Zoologica, 64(3), 284–295.

Perktaş, U., Gür, H., Sağlam, İ. K., & Quintero, E. (2015b). Climate-driven range shifts and demographic events over the history of Kruper’s nuthatch Sitta krueperi. Bird Study, 62(1), 14–28.

Peters, G. (1962). Die Zwergeidechse (Lacerta parva, Boulenger) und ihre Verwandschaftsbeziehungen zu anderen Lacertiden, insbesondere zur Libanon-Eidechse (L. fraasii, Lehrs). Verlag nicht ermittelbar, Zoologische Jahrbücher / Abteilung für Systematik, 89, 407-478.

Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38(5), 817–827.

Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72.

Petrosyan, V., Osipov, F., Bobrov, V., Dergunova, N., Nazarenko, E., Omelchenko, A., Danielyan, F., & Arakelyan, M. (2019). Analysis of geographical distribution of the parthenogenetic rock lizard Darevskia armeniaca and its parental species (D. mixta, D. valentini) based on ecological modelling. Salamandra, 55(3), 173–190.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

Phillips, S. J., Dudík, M., & Schapire, R. E. (2017). Maxent software for modeling species niches and distributions (Version 3.4. 1). Biodiversity Informatics.

Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571.

R. Core Team. (2018). R: A language and environment for statistical computing, R foundation for statistical computing. Vienna: R Core Team; 2018.

Rivera, J. A., Rich, H. N., Michelle Lawing, A., Rosenberg, M. S., & Martins, E. P. (2021). Occurrence data uncover patterns of allopatric divergence and interspecies interactions in the evolutionary history of Sceloporus lizards. Ecology and Evolution, 11(6), 2796–2813.

Rokas, A., Atkinson, R. J., Webster, L., Csóka, G., & Stone, G. N. (2003). Out of Anatolia: Longitudinal gradients in genetic diversity support an eastern origin for a circum‐Mediterranean oak gallwasp Andricus quercustozae. Molecular Ecology, 12(8), 2153–2174.

Sarıkaya, M. A., Zreda, M., Çiner, A., & Zweck, C. (2008). Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quaternary Science Reviews, 27(7–8), 769–780.

Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology, 6(1), 1–10.

Schönswetter, P., Stehlik, I., Holderegger, R., & Tribsch, A. (2005). Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology, 14(11), 3547–3555.

Şekercioğlu, Ç. H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö. E., Semiz, G., Tavşanoğlu, Ç., Yokeş, M. B., Soyumert, A., & Ipekdal, K. (2011). Turkey’s globally important biodiversity in crisis. Biological Conservation, 144(12), 2752–2769.

Sindaco, R., Venchi, A., Carpaneto, G. M., & Bologna, M. A. (2000). The reptiles of Anatolia: A checklist and zoogeographical analysis. Biogeographia–The Journal of Integrative Biogeography, 21(1), 441-554.

Ülker, E. D., Tavşanoğlu, Ç., & Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123(2), 338–347.

Unal, Y., Kindap, T., & Karaca, M. (2003). Redefining the climate zones of Turkey using cluster analysis. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(9), 1045–1055.

Varga, Z. (2009). Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern Central Europe. In Relict species (pp. 57–87). Springer.

Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, A. S., Perkins, S. L., & Guralnick, R. P. (2007). Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 2(7), e563.

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., & Sekiguchi, M. (2010). Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. Journal of Climate, 23(23), 6312–6335.

www.worldclim.org/. (n.d.). WorldClim - Global Climate Data | Free Climate Data for Ecological Modeling and GIS. Retrieved June 18, 2019, from https://www.worldclim.org/

Zeng, Z.-G., Bi, J.-H., Li, S.-R., Chen, S.-Y., Pike, D. A., Gao, Y., & Du, W.-G. (2014). Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biological Conservation, 179, 86–92.

Downloads

Published

2022-03-09

How to Cite

Şahin, M. K. ., Kumlutaş, . Y. ., Yanchukov, A., Çetintaş, O., Candan, K. ., Ilgaz, C. ., & Ayaş, Z. (2022). The Quaternary Range Dynamics of the Dwarf Lizard, Parvilacerta parva (Boulenger, 1887) (Squamata, Lacertidae) in the Anatolian Peninsula. Journal of Wildlife and Biodiversity, 6(1), 79–86. https://doi.org/10.22120/jwb.2021.540551.1259