The synthesis and assessment of the pharmacological potential of novel heterocyclic 1,2,3-triazoline scaffolds and its relation to biological diversity

Authors

  • Zahraa Sabbar Omran University of Karbala, College of Medicine, Karbala, Iraq
  • Ali Jabbar Radhi University of Al-Kafeel, College of Pharmacy, Najaf, Iraq
  • Zaman Abdalhussein Ibadi Alaridhee University of Al-Kafeel, College of Pharmacy, Najaf, Iraq
  • Jawad Alshams University of Al-Kafeel, College of Pharmacy, Najaf, Iraq

DOI:

https://doi.org/10.5281/zenodo.10207433

Keywords:

Sulfamethoxazole, 1,2,3-Triazoline ring, Docking, Click chemistry, Antibacterial activity

Abstract

A novel sulfamethoxazole containing a 1,2,3-triazoline moiety (designated as 1t, 2t, and 3t) was synthesized in the present investigation using a design-driven synthetic approach. The identification of the chemical structures of the synthesized products was accomplished through analytical techniques such as NMR, IR, and spectral analyses. The obtained results were in complete agreement with the assigned structures. The bacterial strains employed in this study included Staphylococcus aureus and Escherichia coli, and all final products were assessed for their antibacterial properties. The minimum inhibitory concentration (MIC) values were verified, revealing noticeable antibacterial activity for the prepared compound. These compounds could potentially serve as a promising starting point in the quest for new antibacterial medications.

References

Attique, S. A., Hassan, M., Usman, M., Atif, R. M., Mahboob, S., Al-Ghanim, K. A., Bilal, M., & Nawaz, M. Z. (2019). A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. International Journal of Environmental Research and Public Health, 16(6), 923.

Bassetti, M., & Righi, E. (2013). Multidrug-resistant bacteria: what is the threat? Hematology 2013, the American Society of Hematology Education Program Book, 2013(1), 428–432.

Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & Medicinal Chemistry, 12(8), 1935–1945.

Bekhit, A. A., Ashour, H. M. A., & Guemei, A. A. (2005). Novel Pyrazole Derivatives as Potential Promising Anti‐inflammatory Antimicrobial Agents. Archiv Der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 338(4), 167–174.

Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J., & Bekhit, A. E.-D. A. (2015). New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. European Journal of Medicinal Chemistry, 94, 30–44.

Cantas, L., Shah, S. Q. A., Cavaco, L. M., Manaia, C. M., Walsh, F., Popowska, M., Garelick, H., Bürgmann, H., & Sørum, H. (2013). A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology, 4, 96.

Cueto, M. (2023). The World Health Organization. In Global Health Essentials (pp. 421–424). Springer.

Dofe, V. S., Sarkate, A. P., Azad, R., & Gill, C. H. (2017). Novel quinoline-based oxadiazole derivatives induce G2/M arrest and apoptosis in human breast cancer MCF-7 cell line. Research on Chemical Intermediates, 43, 7331–7345.

El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J., & Rashad, A. A. (2009). Synthesis and antiviral activity of new pyrazole and thiazole derivatives. European Journal of Medicinal Chemistry, 44(9), 3746–3753.

Faria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N., & Bernardino, A. M. R. (2017). Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry, 25(21), 5891–5903.

Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chemical Society Reviews, 39(4), 1302–1315.

Huisgen, R., & Ugi, I. (1956). Zur Lösung eines klassischen Problems der organischen Stickstoff‐Chemie. Angewandte Chemie, 68(22), 705–706.

Kothayer, H., Elshanawani, A. A., Kull, M. E. A., El-Sabbagh, O. I., Shekhar, M. P. V, Brancale, A., Jones, A. T., & Westwell, A. D. (2013). Design, synthesis and in vitro anticancer evaluation of 4, 6-diamino-1, 3, 5-triazine-2-carbohydrazides and-carboxamides. Bioorganic & Medicinal Chemistry Letters, 23(24), 6886–6889.

Kuehn, B. M. (2013). IDSA: better, faster diagnostics for infectious diseases needed to curb overtreatment, antibiotic resistance. JAMA, 310(22), 2385–2386.

Kumari, M., Tahlan, S., Narasimhan, B., Ramasamy, K., Lim, S. M., Shah, S. A. A., Mani, V., & Kakkar, S. (2021). Synthesis and biological evaluation of heterocyclic 1, 2, 4-triazole scaffolds as promising pharmacological agents. BMC Chemistry, 15, 1–16.

Kuntala, N., Telu, J. R., Banothu, V., Nallapati, S. B., Anireddy, J. S., & Pal, S. (2015). Novel benzoxepine-1, 2, 3-triazole hybrids: synthesis and pharmacological evaluation as potential antibacterial and anticancer agents. MedChemComm, 6(9), 1612–1619.

Lauria, A., Delisi, R., Mingoia, F., Terenzi, A., Martorana, A., Barone, G., & Almerico, A. M. (2014). 1, 2, 3‐Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3‐dipolar cycloadditions. European Journal of Organic Chemistry, 2014(16), 3289–3306.

Pájaro, Y., Sathicq, Á., Puello-Polo, E., Pérez, A., Romanelli, G., & Trilleras, J. (2017). An Efficient K 2 CO 3-promoted synthesis of 1-bromo-2-aryloxyethane derivatives and evaluation of larval mortality against Aedes aegypti. Journal of Chemistry, 2017.

Puneeth, H. R., Ananda, H., Kumar, K. S. S., Rangappa, K. S., & Sharada, A. C. (2016). Synthesis and antiproliferative studies of curcumin pyrazole derivatives. Medicinal Chemistry Research, 25, 1842–1851.

Radhi, A. J., Zimam, E. H., & Al-Mulla, E. A. J. (2019). Synthesis of some novel barbital derivatives based on Carbohydrate as α-glucosidase inhibitors. Research Journal of Pharmacy and Technology, 12(3), 1145–1154.

Rashad, A. A., El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J., & Mostafa, A. (2010). Design, synthesis and preliminary antiviral screening of new N-phenylpyrazole and dihydroisoxazole derivatives. Medicinal Chemistry Research, 19, 1025–1035.

Salman, F. W., Twayej, A. J., Shaheed, H. A., & Radhi, A. J. (2019). New Gemcitabine Derivatives as potent in vitro α-Glucosidase Inhibitors. Nano Biomedicine and Engineering, 11(1), 84–90.

Sharma, P. K., Chandak, N., Kumar, P., Sharma, C., & Aneja, K. R. (2011). Synthesis and biological evaluation of some 4-functionalized-pyrazoles as antimicrobial agents. European Journal of Medicinal Chemistry, 46(4), 1425–1432.

Strzelecka, M., & Świątek, P. (2021). 1, 2, 4-Triazoles as important antibacterial agents. Pharmaceuticals, 14(3), 224.

Yang, Z., Li, P., & Gan, X. (2018). Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: design, synthesis, and antiviral activity. Molecules, 23(7), 1798.

Zhang, R., Eggleston, K., Rotimi, V., & Zeckhauser, R. J. (2006). Antibiotic resistance as a global threat: evidence from China, Kuwait and the United States. Globalization and Health, 2, 1–14.

Zoidis, G., Kritsi, E., Lecinska, P., Ivanov, M., Zoumpoulakis, P., Sokovic, M., & Catto, M. (2021). The triazole ring as a privileged scaffold for putative antifungals: Synthesis and evaluation of a series of new analogues. ChemMedChem, 16(1), 134–144.

Downloads

Published

2023-11-28

How to Cite

Omran, Z. S. ., Radhi, A. J. ., Ibadi Alaridhee, Z. A. ., & Alshams, J. . (2023). The synthesis and assessment of the pharmacological potential of novel heterocyclic 1,2,3-triazoline scaffolds and its relation to biological diversity. Journal of Wildlife and Biodiversity, 7(Special Issue), 98–111. https://doi.org/10.5281/zenodo.10207433