Efficacy of Cryptic rodents and challenges for conservation in Africa: A review


  • Ahmed Seid Ahmed Department of Biology, Hawassa University, P. O. Box 05, Hawassa, Ethiopia
  • Anagaw Atickem Department of Zoological Sciences, Addis Ababa University, and P.O. Box. 1176, Addis Ababa Ethiopia
  • Afework Bekele Department of Zoological Sciences, Addis Ababa University, and P.O. Box. 1176, Addis Ababa Ethiopia




Conservation, Cryptic species, Molecular, Morphology, Rodent


Cryptic species are unique species that are genetically divergent, although formerly nominated as a single species because of their morphological indistinguishability. In the last 20 years, it has been widely documented as a cryptic species in scientific articles and has nearly consistently dispersed across all taxa and ecological niches. Unfortunately, the inconsistency of cryptic species' descriptions and taxonomic classification makes it difficult to quantify and understand their coevolutionary relevance and ecological questions. We aim to review the cryptic rodent species, discuss the mechanisms to describe them, the reasons how diversified, and assess their challenges for conservation. From a limited review of the literature, we found significant numbers of cryptic putative rodent species on the African continent. Methodological error, evolution processes, mutation, speciation, morphological homology, and convergence might be associated with cryptic species. Our regression analysis shows that cryptic species are distributed almost evenly across almost all rodent families in almost all countries. The scatterplot analysis indicates cryptic diversity has a linear scale associated with the number of publications and time. Our result shows articles emphasized the importance of molecular, morphological, cytogenetic, and ecological niche approaches in understanding crypticity. An integrated approach is more appropriate to recognize and decode the notions of cryptic nature, notably for divers’ small mammals, rather than using single methods. Understanding cryptic species is crucial for exact biodiversity estimation and conservation, including endemic and endangered species.

Key words: Conservation, Cryptic species, Molecular, Morphology, Rodent



Adams, D.C., Berns, C.M., Kozak, K.H., Wiens, J.J. (2009). Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biol Sci. 276: 2729–2738.

Adams, M., Raadik., T.A., Burridge, C.P., Georges, A. (2014). Global biodiversity assessment and hyper-cryptic species complexes: More than one species of elephant in the room? Syst Biol. 63.: 518–533. .

Amori, G., Gippoliti, S., Luiselli., L. (2011). Do biodiversity hotspots match with rodent conservation hotspots? Biodivers and Conserv. 20: 3693–3700.

Ancillotto, L., Mori, E., Sozio, G., Solano, E., Bertolino, S., Russo, D. (2017). A novel approach to field identification of cryptic Apodemus wood mice: calls differ more than morphology. Mamm Rev. 47: 6–10.

Baker, R.J. (1984). A sympatric cryptic species of mammal: A new species of rhogeessa (chiroptera: Vespertilionidae). Syst Biol. 33:178–183.

Baker, R.J., Bradley, R.D. (2006). Speciation in mammals and the genetic species concept. J.Mammal. 87: 643–662.

Baskevich, M.I., Potapov, S.G., Mironova, T.A. (2016). Caucasian cryptic species of rodents as models in research on the problems of species and speciation. Biol. Bull. Rev. 6: 245–259.

Baum, D.A. (2016). Choosing among Alternative " Phylogenetic " Species Concepts Author ( s ): David A . Baum and Michael J . Donoghue Published by : American Society of Plant Taxonomists Stable URL : http://www.jstor.org/stable/2419810 Accessed : 11-03-2016 08 : 17 UTC Your. 20: 560–573.

Bekele, A., Capanna, E., Corti, M., Marcus, L.F, Schlitter, D.A. (1993). Systematics and geographic variation of Ethiopian Arvicanthis (Rodentia, Muridae). J. Zool., 230:117–134.

Bickford, D., Lohman, D.J, Sodhi, N.S., Ng., P.K, Meier, R., Winker, K., Ingram. K.K., Das., I. (2007). Cryptic species as a window on diversity and conservation. Trends. Ecol. Evol. 22: 148–155.

Blaxter, M.L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society B: Biol. Sci. 359: 669–679.

Bravo, G.A., Remsen, J.V., Brumfield, R.T. (2014). Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae) Gustavo. Evol. 68: 2757-2774.

Brook, B.W., Bradshaw, C.J.A., Koh., L.P., Sodhi, N.S. (2006). Momentum Drives the Crash : Mass Extinction in the Tropics Published by : Association for Tropical Biology and Conservation Stable URL : http://www.jstor.org/stable/30043246 REFERENCES Linked references are available on JSTOR for this article : You may ne. 38: 302–305.

Brook, B.W., Sodhl, N.S., Ng, P.K., L. (2003). Catastrophic extinctions follow deforestation in Singapore. Nat. 424.: 420–423.

Brooks, T. M., Pimm, S. L., Oyugi, J. O. (1999). Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13: 1140-1150.

Bryja, J., Meheretu, Y., Šumber, R., Lavrenchenko, L.A. (2019). Annotated checklist , taxonomy and distribution of rodents in Ethiopia Annotated checklist , taxonomy and distribution of rodents in Ethiopia. Folia. zool. 68: 117–213.

Burgin, C.J, Colella, J.P., Kahn, P.L, Upham, N.S. (2018). How many species of mammals are there? J. Mammal. 99: 1–14.

Capanna, E., Bekele, A., Capula, M., Castiglia, R., Civitelli, M.V., Codjia, J.T.C., Corti, M., Fadda, C. (1996). A multidisciplinary approach to the systematics of the genus Arvicanthis lesson, 1842 (Rodentia, Murinae). Mammal. 60: 677–696.

Cardenosa, D., Hyde, J., Caballero, S. (2014). Genetic diversity and population structure of the pelagic thresher shark (Alopias pelagicus) in the Pacific Ocean: Evidence for two evolutionarily significant units. PLoS ONE. 9

Ceballos, G., Ehrlich, P.R. (2006). Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences of the United States of America. 103: 19374–19379.

Ceballos, G., Ehrlich, P.R. (2008). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences of the United States of America.106:3841–3846.

Ceballos, G., Ehrlich, P.R. (2009). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences of the United States of America.106: 3841–3846.

Chenuil, A., Cahill, A.E., Délémontey, N., Luc, EDSdu., Fanton, H. (2019). Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies (Vol. 24, Issue June).

Clemins, P.J., Johnson, M.T. (2002). Automatic type classification and speaker identification of african elephant ( Loxodonta africana ) vocalizations. J. Acoust Soc Am. 113: 2306–2306.

Corti, M., Castiglia, R., Colangelo, P., Capanna, E., Beolchini, F., Bekele, A., Oguge, N.O., Makundi, R.H., Sichilima, A.M., Leirs, H., Verheyen, W., Verhagen, R. (2005). Cytotaxonomy of rodent species from Ethiopia, Kenya, Tanzania and Zambia. Belg. J. Zool. 135:197–216.

Daly, A.J., Meester, N.De., Baetens, J.M., Moens, T., Baets, De, B.A. (2021). Untangling the mechanisms of cryptic species coexistence in a nematode community through individual-based modelling. Oikos. 128: 659–667.

de Queiroz, K. (1998). The General Lineage Concept of Species , Species Crteria , and the Process of Speciation and Terminological Recommendations. Endless Forms: Species and Speciation. 57–75.

De Queiroz, K. (2005). Different species problems and their resolution. BioEssays. 27:1263–1269.

De Queiroz, K. (2007). Species concepts and species delimitation. Syst. Biol.. 56: 879–886.

Demos, T.C., Kerbis, Peterhans, J.C., Agwanda, B., Hickerson, M.J. (2014). Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Molecular Phylogenetics and Evolution. 71: 41–54.

Dobzhansky, T. (1950). Mendelian population and their evolution. 84: 401–418.

Dobzhansky, T., Dobzhansky, T. (1971). Genetics of the evolutionary process.139: Columbia University Press.

Ducroz, J. F., Granjon, L., Chevret, P., Duplantier, J. M., Lombard, M., Volobouev, V. (1997). Characterization of two distinct species of Arvicanthis (Rodentia: Muridae) in West Africa: cytogenetic, molecular and reproductive evidence. J. Zool. 241: 709-723.

Egea, E., David, B., Choné, T., Laurin, B., Féral, J., Egea, E., David, B., Choné, T., Laurin, B., Féral, J. (2016). Morphological and genetic analyses reveal a cryptic species complex in the echinoid Echinocardium cordatum and rule out a stabilizing selection explanation . To cite this version : HAL Id : hal-01205849. Mol Phylogenet Evol. 94: 207–220.

Eme, D., Zagmajster, M., Delić, T., Fišer, C., Flot, J.F., Konecny-Dupré, L., Pálsson, S., Stoch, F., Zakšek, V., Douady, C.J., Malard, F. (2018). Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography. 41: 424–436.

Fadda, N.C., Castiglia, R., Colangelo, P., Corti, M., RobertMachang’u, Makundi, R., Scanzani, A., Tesha, P., Capanna, W.V.E. (2001). The Rodent fauna ofTanzania : a cytotaxonomic report from the Maasai Steppe (1999). Angew. Chem. Int. Ed. 6.

Fennessy, J., Bidon, T., Reuss, F., Kumar, V., Elkan, P., Nilsson, M.A., Vamberger, M., Fritz, U., Janke, A. (2016). Multi-locus Analyses Reveal Four Giraffe Species Instead of One. Curr. Biol. 26: 2543–2549.

Fiser. C., Robinson, C.T., Malard, F. (2018a). Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol. 27: 613–635.

Fiser, C., Robinson, C.T., Malard, F. (2018b). Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol.27: 613-35.

Galan, M., Pagès, M., Cosson, J.F. (2012). Next-Generation Sequencing for Rodent Barcoding: Species Identification from Fresh, Degraded and Environmental Samples. PLoS ONE. 7:GibbR., Moses, L.M., Redding, D.W, Jones, K.E. (2017). Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glo. Heal. 111..

Gómez, A., Serra, M., Carvalho, G.R., Lunt, D.H. (2002). Speciation in Ancient Cryptic Species Complexes: Evidence From the Molecular Phylogeny of Brachionus Plicatilis (Rotifera). Evol. 56: 1431.

Hamilton, M.J., Leslie, D.M. (2021). Celebrating five decades of Mammalian Species , highlighted by the publication of the 1 , 000 th account. 102: 681–684.

Happold, D.C.D. (2013). Rodents, hares and rabbits. Mammals of Africa. 3: 784.

Harmon, L.J., Schulte, J.A., Larson, A., Losos, J.B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Sci. 301: 961–964.

Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Nat. Acad SciU.SA. 101: 14812–14817.

Hoskin, C.J., Higgie, M., McDonald, K.R., Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Natu. 437: 1353–1356.

Jacobs, D.S., Eick, G.N., Schoeman, M.C., Matthee, C.A. (2006). Cryptic species in an insectivorous bat, Scotophilus dinganii. J. Mammal. 87: 161–170.

Jorger, K.M., Schrodl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Front. Zool. 10: 1–27.

Knowlton, N. (1993). Sibling species in the sea. Ann. Rev. Ecol. Syst. 24: 189–216.

Korshunova,T., Picton, B., Furfaro, G., Mariottini, P., Pontes, M., Prkić, J., Fletcher, K., Malmberg, K., Lundin, K., Martynov, A. 2019. Multilevel fine-scale diversity challenges the cryptic species concept. Sci. Rep. 9: 1–23.

Küper, W., Sommer, J.H., Lovett, J.C., Mutke, J., Peter, H., Beentje, H.J., Sylva, R., Rosine, A., Chatelain, C., Barthlott, W., Kuper, W., Sommer, J.H., Lovett,J.C., Mutke, J., Peter, H., Beentje, H.J., Angele. S., Rompaey, R.Van Chatelain, C., Titact. A.B. (2004). Afr. Hots.pots of Biodiv.ersity Redefiend. Ann.. e Miss. Botan. Gar.. 92:139–152.

Larsen, H.L., Pertoldi, C., Madsen, N., Randi, E., Stronen, A.V., Root-Gutteridge, H., Pagh, S. (2022). Bioacoustic Detection of Wolves: Identifying Subspecies and Individuals by Howls. Animals. 12: 1–14.

Laurance, W.F. (1999). Reflections on the tropical deforestation crisis. Biol Conserv. 91: 109–117.

Lecompte, E., Brouat, C., Duplantier, J.M., Galan, M., Granjon, L., Loiseau, A., Mouline, K., Cosson, J.F. (2005). Molecular identification of four cryptic species of Mastomys (Rodentia, Murinae). Biochem. Syst. Ecol. 33: 681–689.

Lee, M.S.Y., Oliver, P.M. (2016). Life on Earth: Count cryptic species in biodiversity tally. Natu, 534: 621.

Lincoln, R.J. (1998). A dictionary of ecology, evolution and systematics (Issue C/574.5 L5).

Matsuda, T., Fukumoto, C., Hinomoto, N. (2013). DNA-Based Identification of Spider Mites : Molecular Evidence for Cryptic Species of the Genus Tetranychus ( Acari : Tetranychidae ). 463–472.

Mayden, R.L (1997). A hierarchy of species concepts: the denouement in the saga of the species problem.

Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist Columbia University Press. New York.

Mayr. E. (1999). Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press.

Mayr, E. (2013). Animal species and evolution. Harvard University Press.

Mendelson, T.C., Shaw, K.L. (2002). Genetic and behavioral components of the cryptic species boundary between Laupala cerasina and L. kohalensis (Orthoptera: Gryllidae). Genetica. 116: 301–310.

Monadjem, A., Taylor, P.J. Denys, C., Cotterill, F.P.D. (2015). Conservation of African rodents. Rodents of Sub-Saharan Africa. 22–27.

Morard, R., Escarguel, G., Weiner, A.K.M., André, A., Douady, C.J., Wade, C.M., Darling, K.F., Ujiié, Y., Seears, H.A., Quillévéré, F., De Garidel-Thoron, T., De Vargas, C., Kucera, M. (2016). Nomenclature for the Nameless: A Proposal for an Integrative Molecular Taxonomy of Cryptic Diversity Exemplified by Planktonic Foraminifera. Syst. Biol. 65: 925–940.

Moutinho, A.F., Serén, N., Paupério, J., Silva, T.L., Martínez-Freiriá, F., Sotelo, G., Faria, R., Mappes, T., Alves, P.C., Brito, J.C., Boratyński, Z. (2020). Evolutionary history of two cryptic species of northern African jerboas. BMC Evol. Biol. 20: 1–16.

Myers N. 1998. Global biodiversity priorities and expanded conservation policies. Conservation in a Changing World. 273–285.

Myers, N., Mittermeler, R.A., Mittermeler, C.G., Fonseca, G.A.B, Kent, J. (2000). Biodiversity hotspots for conservation priorities. Natu.403: 853–858.

Nadler, S.A., De Len, G.P.P. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology. 138: 1688–1709.

Nantarat, N., Wade, C. M., Jeratthitikul,, E., Sutcharit,, C., Panha,, S. (2014). Molecular evidence for cryptic speciation in the Cyclophorus fulguratus species complex (Caenogastropoda: Cyclophoridae) with description of new species. PLoS One. 9.

Navia, D., Gondim, M.G.C., Aratchige, N.S., de Moraes, G.J. (2013). A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest. Exp. Appl. Acarol. 59: 67–94.

Oliver, P.M., Adams, M., Doughty, P. (2010). Molecular evidence for ten species and Oligo-Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae). BMC Evol. Biol. 10: 1–11.

Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.F., Hugot, J.P., Morand, S., Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol Biol. 10.

Parsons, S. (2001). Identification of New Zealand bats (Chalinolobus tuberculatus and Mystacina tuberculata) in flight from analysis of echolocation calls by artificial neural networks. J. Zool. 253: 447–456.

Parsons, S., Jones. G. (2000). Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J. Exp Biol. 203: 2641–2656.

Paterson, H.E.H. (1991). The Recognition of Cryptic Species Among Economically Important Insects. 1–10.

Perez-PoncedeLeo, G., Poulin, R. (2016). Taxonomic distribution of cryptic diversity aGerardo Pe´rez-Ponce de Leo´n1 and Robert Poulin2 1Departamentomong metazoans: Not so homogeneous after all. Biol Lett. 12.

Pfenninger, M., Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7: 1–6.

Rabiee MH, Mahmoudi A, Siahsarvie R, Kryštufek B, Mostafavi E. 2018. Rodent-borne diseases and their public health importance in Iran. PLoS Negle. Trop. Dise. 12: 1–20.

Rabosky, D.L., Matute, D.R. (2013). Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Nat. Acad. Sci. U.S.A Am. 110: 15354–15359.

Robinson, T. J. (2001). The comparative cytogenetics of African small mammals in perspective: status, trends, and bibliography. Afr. Sm. Mamm. 185–214.

Roldan, E.R.S., Gomendio, M., Vitullo, A.D. (1992). The evolution of eutherian spermatozoa and underlying selective forces: Female selection and sperm competition. Biol. Rev. Cambri. Philosop. Soc. 67: 551–593.

Roldan, E.R.S., Vitullo, A.D,, Merani, M.S., Von Lawzewitsch, I. (1985). Cross fertilization in vivo and in vitro between three species of vesper mice, Calomys (Rodentia, Cricetidae). J. Exp Zool. 233: 433–442.

Rossi, L.F., De La, Sancha, N.U., Luaces, J.P., Estevez, D.Y., Merani, M.S. (2018). Morphological description and comparison of sperm from eighteen species of cricetid rodents. J. Mamm. 99: 1398–1404.

Rueness, E. K., Trosvik, P., Atickem, A., Sillero-Zubir., C., Trucchi, E. (2015). The African wolf is a missing link in the wolf-like canid phylogeny. BioRxiv. 1–33.

Rueness, E. K., Asmyhr, M.G., Sillero-Zubiri, C., Macdonald, D.W., Bekele, A., Atickem, A., Stenseth, N.C. (2011). The cryptic African wolf: Canis aureus lupaster is not a golden jackal and is not endemic to Egypt. PLoS ONE. 6.

Russell, J.C., Hasler, N., Klette, R., Rosenhahn, B. (2009). Automatic track recognition of footprints for identifying cryptic species. Ecol. 90: 2007–2013.

Saez, A. G., Lozano, E. (2005). Cryptic species: as we discover more examples of species that are morphologically indistinguishable, we need to ask why and how they exist. Natu. 433:111.

Saleh, M., Younes, M., Sarhan, M., Abdel-Hamid, F. (2018). Melanism and coat colour polymorphism in the Egyptian Wolf Canis lupaster Hemprich & Ehrenberg (Carnivora: Canidae) from Egypt. Zool. Middl. East. 64: 195–206.

Singha, S., Hoskin, C.J., Couper, P., Potter, S., Moritz, C. (2018). A framework for resolving cryptic species: A case study from the lizards of the Australian wet tropics. Syst. Biol. 67:1061–1075.

Skoracka, A., Magalhães, S., Rector, B.G., Kuczyński, L. (2015). Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? Exp. App. Acarol. 67: 165–182.

Smith, K. L., Harmon, L. J., Shoo, L. P., Melville, J. (2011). Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evol. 65:976–992.

Smith, M.A., Fisher, B.L., Heber, P.D.N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: The ants of Madagascar. Philosophical Transactions of the Royal Society B: Biol. Sci. 360: 1825–1834.

Smolensky, N.L. (2014). Co-occurring cryptic species pose challenges for conservation: A case study of the African dwarf crocodile (Osteolaemus spp.) in Cameroon. Oryx. 49: 584–590.

Sodhi, N.S., Brook, B.W. (2006). Southeast Asian biodiversity in crisis. Cambridge University Press.

Stowell, D., Petrusková, T., Šálek, M., Linhart, P. (2019). Automatic acoustic identification of individuals in multiple species: Improving identification across recording conditions. J. Roy. Soci. Inter. 16.

Struck, T.H., Feder, J.L., Bendiks,M., Birkeland, S., Cerca, J., Gusarov, V.I., Kistenich, S., Larsson, K.H., Liow, L.H., Nowak, M.D., Stedje, B, Bachmann, L., Dimitrov, D. (2018). Finding Evolutionary Processes Hidden in Cryptic Species. Tren. Ecol. Evol. 33: 153–163.

Stuart, B.L., Inger, R.F., Voris, H.K. (2006). High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biolo. Lett. 2: 470–474.

Theodoridis, S., Nogués-Bravo, D., Conti E. (2019). The role of cryptic diversity and its environmental correlates in global conservation status assessments: Insights from the threatened bird’s-eye primrose (Primula farinosa L.). Divers. Distribu.. 25.

Trapanotto, M., Nanni, L., Brahnam, S. (2022). Convolutional Neural Networks for the Identification of African Lions from Individual Vocalizations.

Trontelj, P., Cene, F. (2009). Perspectives : Cryptic species diversity should not be trivialised Related papers. Syst. Biodivers. 7: 1–3.

van Wilgen, B. (2018). A new documentation of African rodent diversity. South African Journal of Science. 114.

Vaughan, N., Harri, G.J. S. (1997). Bioacoustics The International Journal of Animal Sound and its Recording Identification of British Bat Species By Multivariate Analysis of Echolocation Call Parameters. 7: 189–207.

Walter, D.E., Proctor, H.C. (2013). Acari Underwater, or, Why Did Mites Take the Plunge? In Mites: Ecology, Evolution & Behaviour.

Wellborn, G.A., Cothra,n R.D. (2004). Phenotypic similarity and differentiation among sympatric cryptic species in a freshwater amphipod species complex. Freshw. Biol. 49: 1–13.

Wilson, D.E., Reede,r D.M. (2005). Mammal species of the world: a taxonomic and geographic reference (Vol. 1). JHU press.

Winger, B.M., Bates, J.M. (2015). The tempo of trait divergence in geographic isolation: avian speciation across the marañon valley of peru. Evol.3: 772-787.

Winker, K. (2005). Sibling species were first recognized by William Derham (1718). Auk. 122: 706–707.

Witt, J. D. S., Threloff, D. L., Hebert, P. D. N. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: Implications for desert spring conservation. Mol Ecol. 15: 3073–3082.

Yalden, D.W., Largen, M.J., Kock, D. (1976). Catalogue of the mammals of ethiopia 2. Insectivora and rodentia (pubblicazioni del centro di studio per la faunistica ed ecologia tropicali del c.n.r.: Cxl). Monit. Zool. Italiano, Suppl. 8: 1–118.

Yalden, D.W., Largen, M.J., Kock, D., Hillman, J.C. (1996). Catalogue of the mammals of Ethiopia and Eritrea. 7. revised checklist, zoogeography and conservation. Trop. Zool. 9: 73–164.

Zsebo’k, S., Czabán, D., Farkas, J., Siemers, B.M., von Merten, S. (2015). Acoustic species identification of shrews: Twittering calls for monitoring. Ecol. Inform. 27: 1–10.

Zúñiga-Reinoso, Á., Benítez, H.A. (2015). The overrated use of the morphological cryptic species concept: An example with Nyctelia darkbeetles (Coleoptera: Tenebrionidae) using geometric morphometrics. Zoologis Anzeir. 255: 47–53.




How to Cite

Ahmed, A. S. ., Atickem, A., & Bekele, A. . (2023). Efficacy of Cryptic rodents and challenges for conservation in Africa: A review. Journal of Wildlife and Biodiversity, 8(1), 343–365. https://doi.org/10.5281/zenodo.10206987