Modeling the past and contemporary habitat suitability and distribution of the Levantine viper Macrovipera lebetinus (Linnaeus, 1758) (Ophidia: Viperidae)

Modeling the past and contemporary habitat suitability and distribution of the Levantine viper

Authors

  • Rasoul Karamiani Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
  • Maryamalsadat Hosseini Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

DOI:

https://doi.org/10.5281/zenodo.10162258

Keywords:

Blunt-nosed viper, Climate condition, Last interglacial, mid-Holocene

Abstract

Evaluating the climate changes in the past and contemporary time, and the impact of those changes on the distribution range of the species have attracted research interest. The venomous snakes of the genus Macrovipera consisting of the recognized species M. lebetinus and M. razii are documented from Iran. In the study, we modeled the potential distribution areas and determined the suitable habitats in the past (the Last Interglacial [LIG], and mid-Holocene [MH]), and their present distribution for the Levantine viper M. lebetinus by MaxEnt. Models of the species indicated good fit operation by the average high area under the curve (AUC) values (LIG =0.979± 0.008, MH =0.968± 0.028, Contemporary =0.933± 0.036). Three important climate variables had significant contributions to the simulation of the LIG model distribution of M. lebetinus as mean temperature of the driest quarter of the year (43.8%), isothermality (26.9%), and mean temperature of the wettest quarter of the year (17.9%); maximum temperature of the warmest month (36.4%), mean temperature of the wettest quarter of the year (25.2%), and isothermality (21.2%) variables had significant contributions to the contemporary time and the MH model distribution the Levantine viper, respectively; Two important climate variables had immense contributions to the predication of the contemporary model distribution M. lebetinus as seasonal and annual precipitation (32.9%), and a topographic variable as slope (31.5%). Because it seems that they have sensitivity to temperature and precipitation levels of the seasons. The MH and the LGM models indicated a larger suitable area than the contemporary distribution, which it is concluded that these variables form a natural barrier for species dispersion.  

References

Ananjeva, N.B., Orlov, N.L., Khalikov, R.G., Darevsky, I.S., S.A., Ryabov, I.S., &. Barabanov, A.V. (2006). The reptiles of northern Eurasia: taxonomic diversity, distribution, conservation status (No. 47). Pensoft Publishers.

Andrén, H. (1999). Habitat fragmentation, the random sample hypothesis and critical thresholds. Oikos, 84 (2), 306–308.

Bender, D.J., Contreras, T.A., & Fahrig, L. (1998). Habitat loss and population decline: a meta‐analysis of the patch size effect. Ecology, 79(2), 517–533.

Bonino, M.F., Moreno Azocar, D.L., Schulte, J.A., & Cruz, F.B. (2015). Climate change and lizards: changing species' geographic ranges in Patagonia. Regional Environmental Change, 15 (6), 1121–1132.

Cattaneo, A. (2020). Macrovipera schweizeri (Werner, 1935): comparison of the populations of Milos and Sifnos islands (SW Cyclades) (Serpentes Viperidae). Naturalista sicil, 44, 127–54.

Davis, M.B., Shaw, R.G., & Etterson, J.R. (2005). Evolutionary responses to changing climate. Ecology, 86(7), 1704 – 1714.

De Souza Muñoz, M.E., De Giovanni, R., de Siqueira, M.F., Sutton, T., Brewer, P., Pereira, R.S., Canhos, D.A.L., & Canhos, V.P. (2011). openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15 (1), 111–135.

Disi, A.M., Modry, D., Necas, P., & Rifai, L. (2001). Amphibians and Reptiles of the Hashemite Kingdom of Jordan: An Atlas and Field Guide Edition Chimaira. Frankfurt am Main, 408 pp.

Elith, J., Graham, C.H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti- Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., & Zimmermann, N.E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

Fallah, B., Sodoudi, S., Russo, E., Kirchner, I., & Cubasch, U. (2017). Towards modeling the regional rainfall changes over Iran due to the climate forcing of the past 6000 years. Quaternary International, 429, 119–128.

Farahani, R., & Asgharzadeh, A. (2023). Golestan National Park’s ecosystem services, a case with brown bears habitat suitability. Scientific Reports in Life Sciences, 4(1), 1–7. https://doi.org/10.5281/zenodo.7632690

Ferraz, G., Nichols, J.D., Hines, J.E., Stouffer, P.C., Bierregaard Jr, R.O., & Lovejoy, T.E. (2007). A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. science, 315(5809), 238–241.

Fischer, J., & Lindenmayer, D.B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global ecology and biogeography, 16(3), 226565-280.

Gallien, L., Douzet, R., Pratte, S., Zimmermann, N.E., & Thuiller, W. (2012). Invasive species distribution models–how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.

Garrigues, T., Dauga, C., Ferquel, E., Choumet, V., & Failloux, A.B. (2005). Molecular phylogeny of Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia (Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations. Molecular Phylogenetics and Evolution, 35(1), 35–47.

Golay, P., Smith, H.M., Broadley, J., Dixon, J.R., McCarthy, C., Rage, J.C., & Schätti, B., & Toriba, M. (1993). Endoglyphs and other major venomous snakes of the world: a checklist. Azemiops S. A., Geneva, Switzerland.

Graham, C.H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in ecology & evolution, 19(9), 497–503.

Herrmann, H.W., Joger, U., & Nilson, G. (1992). Phylogeny and systematics of viperine snakes. III: resurrection of the genus Macrovipera (Reuss, 1927) as suggested by biochemical evidence. Amphibia-Reptilia, 13(4), 375–392.

Hijmans, R.J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant genetic resources newsletter, 15–19.

Hraoui-Bloquet, S., Sadek, R.A., Sindaco, R., & Venchi, A. (2002). The herpetofauna of Lebanon: new data on distribution. Zoology in the Middle East, 27(1), 35–46.

http://www.gbif.org. Occurrence Download https://doi.org/10.15468/dl.ywygqv [Accessed: 08 March 2022].

Jablonski, D., & Masroor, R. (2020). Macrovipera lebetinus in Pakistan. Herpetological Bulletin, 153, 44–45.

Jestrzemski, D., & Kuzyakova, I. (20198). Morphometric characteristics and seasonal proximity to water of the Cypriot bluntnosed viper Macrovipera lebetina lebetina (Linnaeus, 1758). Journal of Venomous Animals and Toxins including Tropical Diseases, 24.

Jones, M., Djamali, M., Stevens, L., Heyvaert, V., Askari, H., Noorollahi, D.W., & Weeks, L. (2013). Mid-Holocene environmental and climatic change in Iran. Ancient Iran and its neighbours: local developments and long-range interactions in the 4th millennium BC, British Institute for Persian Studies and Oxbow Books, Oxford, UK, 25–34.

Kaliontzopoulou, A., Brito, J.C., Carretero, M.A., Larbes, S., & Harris, D.J. (2008). Modelling the partially unknown distribution of wall lizards (Podarcis) in North Africa: ecological affinities, potential areas of occurrence, and methodological constraints. Canadian Journal of Zoology, 86(9), 992–1001.

Kamelin, E.R., Lukin, Y.A., & Milto, K.D. (1997). Hybridization of Vipera schweizeri (Werner, 1935) and Vipera lebetina obtusa, Dvigubsky 1832. Russian Journal of Herpetology, 4(1), 75–78.

Karamiani, R., & Rastegar-Pouyani, N. (2021). The effect of climate change on habitat suitability and a distribution model of the Iranian fat–tailed gecko, Eublepharis angramainyu Anderson and Leviton, 1966 (Sauria: Eublepharidae) since the last interglacial to 2050. Zoology and Ecology, 31, 24–32.

Karamiani, R., Rastegar-Pouyani, N., & Rastegar-Pouyani, E. (2018). Modeling the past and current distribution and habitat suitability for Ablepharus grayanus and A. pannonicus (Sauria: Scincidae). Asian Herpetological Research, 9(1), 56–64.

Khan, M.S. (2002). A Guide to the Snakes of Pakistan. Frankfurt am Main: Edition Chimaira.

Kim, D.I., Park, I.K., Bae, S.Y., Fong, J.J., Zhang, Y.P., Li, S.R., Ota, J. Kim, S. & Park, D. (2020). Prediction of present and future distribution of the Schlegel’s Japanese gecko (Gekko japonicus) using MaxEnt modeling. Journal of Ecology and Environment, 44(1), 1–8.

Latifi, M. (1991). The Snakes of Iran. English edition. Contributions to Herpetology, vol. 7. Ohio, USA: SSAR Oxford, 159 pp.

Lenk, P., Kalyabina, S., Wink, M., & Joger, U. (2001). Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Molecular phylogenetics and evolution, 19(1), 94–104.

Leviton, A.E., Anderson, S.C., Adler, K.A., & Minton, S.A. (1992). Handbook to Middle East Amphibians and Reptiles. Oxford, Ohio Vii + 252 pp.

Mantyka‐pringle, C.S., Martin, T.G., & Rhodes, J.R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta‐analysis. Global Change Biology, 18(4), 1239–1252.

McDiarmid, R. W., Campbell, J. A., & Touré, T. (1999). Snake species of the world: A taxonomic and geographic reference. Herpetologists' League, Washington, DC.

Molnar, P., & Rajagopalan, B. (2020). Mid‐Holocene Sahara‐Sahel precipitation from the vantage of present‐day climate. Geophysical Research Letters, 47(16), e2020GL088171.

Nikolova, I., Yin, Q., Berger, A., Singh, U.K., & Karami, M.P. (2013). The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3. Climate of the Past, 9(4), 1789–1806.

Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological conservation, 117(3), 285–297.

Oraie, H., Rastegar-Pouyani, E., Khosravani, A., Moradi, N., Akbari, A., Sehhatisabet, M.E., Shafiei, S., Stümpel, N. & Joger, U. (2018). Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra, 54(4), 233–248.

Park, H.S., Kim, S.J., Stewart, A.L., Son, S.W., & Seo, K.H. (2019). Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Science advances, 5(12), eaax8203.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.

Pearson, R.G., Raxworthy, C.J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, 34(1), 102–117.

Phillips, S.J., Anderson, R.P., & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231–259.

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecological applications, 19(1), 181–197.

Pickarski, N. (2014). Vegetation and climate history during the last glacial–interglacial cycle at Lake Van, eastern Anatolia. Thesis. Universitäts–und Landesbibliothek Bonn.

Prugh, L.R., Hodges, K.E., Sinclair, A.R., & Brashares, J.S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105(52), 20770–20775.

Pyron, R.A., Burbrink, F.T., & Wiens, J.J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC evolutionary biology, 13, 1–54.

Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C.A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal for Nature Conservation, 22(5), 391–404.

Ray, L. L. (1992). The Great Ice Age. US Department of the Interior, US Geological Survey.

Sillero, N., & Carretero, M.A. (2013). Modelling the past and future distribution of contracting species. The Iberian lizard Podarcis carbonelli (Squamata: Lacertidae) as a case study. Zoologischer Anzeiger-A Journal of Comparative Zoology, 252(3), 289–298.

Sindaco, R., Venchi, A. & Grieco, C. (2013). The Reptiles of the Western Palearctic, Volume 2: Annotated Checklist and Distributional Atlas of the Snakes of Europe, North Africa, Middle East and Central Asia, with an Update to. Monografie della Societas Herpetologica Italica.

Spiesman, B.J., Stapper, A.P., & Inouye, B.D. (2018). Patch size, isolation, and matrix effects on biodiversity and ecosystem functioning in a landscape microcosm. Ecosphere, 9(3), e02173.

Stümpel, N., & Joger, U. (2009). Recent advances in phylogeny and taxonomy of Near and Middle Eastern Vipers–an update. ZooKeys, 31, 179–191.

Terral, J.F., & Mengüal, X. (1999). Reconstruction of Holocene climate in southern France and eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4), 71–92.

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., ... & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

Travis, J.M.J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 467–473.

Uetz, P., Freed, P., Aguilar, R., Reyes, F., & Hošek, J. (2023). The Reptile Database, URL: http://www.reptile-database.org (accessed on June 12, 2023).

Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., ... & Widmann, M. (2008). Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews, 27(19–20), 1791–1828.

Wüster, W., Peppin, L., Pook, C.E., & Walker, D.E. (2008). A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Molecular Phylogenetics and Evolution, 49(2), 445–459.

Young, A., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in ecology & evolution, 11(10), 413–418.

Downloads

Published

2023-09-16

How to Cite

Karamiani, R. ., & Hosseini , M. . (2023). Modeling the past and contemporary habitat suitability and distribution of the Levantine viper Macrovipera lebetinus (Linnaeus, 1758) (Ophidia: Viperidae): Modeling the past and contemporary habitat suitability and distribution of the Levantine viper . Journal of Wildlife and Biodiversity, 8(1), 39–53. https://doi.org/10.5281/zenodo.10162258