Modelling habitat suitability and connectivity of the Caspian ‎pond turtle (Mauremys caspica) in Central Zagros, Iran‎

Authors

  • Fereydoun Ghaedi Bardeh Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord 8818634141
  • Mohammad Reza Ashrafzadeh Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
  • Iraj Hashemzadeh Segherloo Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord 8818634141
  • Ruhollah Rahimi Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord 8818634141

DOI:

https://doi.org/10.22120/jwb.2020.131961.1170

Keywords:

Chaharmahal va Bakhtiari, connectivity, freshwater pond, habitat patches, turtles, Mauremys caspica

Abstract

Habitat loss, fragmentation, and alteration are among the most critical threats to freshwater pond turtles. There is scarce data on the distribution of suitable habitats and landscape connectivity of pond turtles in Iran. In this study, the maximum entropy algorithm (MaxEnt) was used to predict the habitat suitability of the Caspian pond turtle (Mauremys caspica) in Chaharmahal va Bakhtiari province in the Central Zagros Mountains, Southwest Iran. Our findings showed that 10.46% (1729 km2) of the study area could be considered as suitable habitat for the Caspian pond turtle. In contrast, only about 6.23% (107.72 km2) of these suitable habitats are covered by conservation areas. Distance to the river (43.6%), distance to agricultural lands (14.5%), and minimum temperature of the coldest month (Bio6) (11.2%) were identified as the most important variables contributing to habitat selection by the species. The findings showed that while there is relatively good connectivity between many habitat patches, weak connectivity was predicted between some habitat patches. This study emphasizes the conservation priorities focusing on habitat protection, facilitating the movement of individuals between habitat patches and habitat connectivity.

 

References

Adak, S. (2019). Habitat characteristics and threats to Euphrates softshell turtle (Rafetus euphraticus) in Hawr al-Azim Marshland, Khuzestan Province. University of Kurdistan, Iran.

Adams, W. W., Stewart, J. J., Cohu, C. M., Muller, O., & Demmig-Adams, B. (2016). Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01026

Allen, A. M., & Singh, N. J. (2016). Linking Movement Ecology with Wildlife Management and Conservation. Frontiers in Ecology and Evolution, 3. https://doi.org/10.3389/fevo.2015.00155

Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., & Khorozyan, I. (2019). Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research, 64(1), 39–51. https://doi.org/10.1007/s13364-018-0384-y

Berger, T. (2008). Concepts of national competitiveness. Journal of international Business and Economy. Journal of International Business and Economy, 9(1).

Brown, J. L. (2014). SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200

Ceballos, G. (2002). Mammal Population Losses and the Extinction Crisis. Science, 296(5569), 904–907. https://doi.org/10.1126/science.1069349

Crooks, K. R., & Sanjayan, M. A. (2006). Connectivity conservation: Maintaining Connections for Nature. In K. R. Crooks & M. A. Sanjayan (Eds.), Connectivity Conservation (pp. 1–20). Cambridge University Press, Cambridge.

Dailey, C. (2017). Revising a Habitat Suitability Model for Spotted Turtles (Clemmys guttata) in Upstate New York. Rochester Institute of Technology, USA.

Dhanjal-Adams, K. L., Hanson, J. O., Murray, N. J., Phinn, S. R., Wingate, V. R., Mustin, K., Lee, J. R., Allan, J. R., Cappadonna, J. L., Studds, C. E., Clemens, R., Roelfsema, C. M., & Fuller, R. A. (2016). The distribution and protection of intertidal habitats in Australia. Emu - Austral Ornithology, 116(2), 208–214. https://doi.org/10.1071/MU15046

Farashi, A., & Shariati, M. (2017). Biodiversity hotspots and conservation gaps in Iran. Journal for Nature Conservation, 39, 37–57. https://doi.org/10.1016/j.jnc.2017.06.003

Friedrichs‐Manthey, M., Langhans, S. D., Hein, T., Borgwardt, F., Kling, H., Jähnig, S. C., & Domisch, S. (2020). From topography to hydrology—The modifiable area unit problem impacts freshwater species distribution models. Ecology and Evolution, 10(6), 2956–2968. https://doi.org/10.1002/ece3.6110

FRWMO. (2010). Iranian forests, range and watershed management organization national land use/land cover map.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

Habibzadeh, N., & Ashrafzadeh, M. R. (2018). Habitat suitability and connectivity for an endangered brown bear population in the Iranian Caucasus. Wildlife Research, 45(7), 602. https://doi.org/10.1071/WR17175

Hamernick, M. (2000). Home ranges and habitat selection of Blanding’s turtles (Emydoidea blandingii) at the Weaver Dunes, Minnesota.

Hermes, C., Keller, K., Nicholas, R. E., Segelbacher, G., & Schaefer, H. M. (2018). Projected impacts of climate change on habitat availability for an endangered parakeet. PLOS ONE, 13(1), e0191773. https://doi.org/10.1371/journal.pone.0191773

Hilty, J. A., Lidicker, Jr, W. Z., & Merenlender, A. M. (2012). Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Illustrated Edition. Island Press.

Jazayeri, B., Ashrafzadeh, M. R., Rahimi, R., & Hashemzadeh, S. I. (2020). Phylogeny and genetic diversity of Caspian pond turtle (Mauremys caspica Gmelin, 1774) in Chaharmahal va Bakhtiari province, Iran. Iranian Journal of Natural Environment, 2020.

Jowkar, H., Ostrowski, S., Tahbaz, M., & Zahler, P. (2016). The conservation of biodiversity in Iran: threats, challenges and hopes. Iranian Studies, 49(6), 1065–1077.

Joyal, L., McCollough, M., & Hunter, M. (2001). Landscape Ecology Approaches to Wetland Species Conservation: A Case Study of Two Turtle Species in Southern Maine. Conservation Biology, 15(6), 1755–1762.

Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058

Markle, C. E., & Chow-Fraser, P. (2014). Habitat Selection by the Blanding’s Turtle (Emydoidea blandingii) on a Protected Island in Georgian Bay, Lake Huron. Chelonian Conservation and Biology, 13(2), 216–226. https://doi.org/10.2744/CCB-1075.1

McRae, B. H., Schumaker, N. H., McKane, R. B., Busing, R. T., Solomon, A. M., & Burdick, C. A. (2008). A multi-model framework for simulating wildlife population response to land-use and climate change. Ecological Modelling, 219(1–2), 77–91. https://doi.org/10.1016/j.ecolmodel.2008.08.001

Millar, C. S., & Blouin-Demers, G. (2011). Spatial Ecology and Seasonal Activity of Blanding’s Turtles (Emydoidea blandingii) in Ontario, Canada. Journal of Herpetology, 45(3), 370–378. https://doi.org/10.1670/10-172.1

Millar, C. S., & Blouin-Demers, G. (2012). Habitat suitability modelling for species at risk is sensitive to algorithm and scale: A case study of Blanding’s turtle, Emydoidea blandingii, in Ontario, Canada. Journal for Nature Conservation, 20(1), 18–29. https://doi.org/10.1016/j.jnc.2011.07.004

Mozaffari, O., Kamali, K., & Fahimi H. (2014). The atlas of reptiles of Iran. Department of Environment of Iran. Tehran, Iran.

Natuhara, Y. (2008). Evaluation and planning of wildlife habitat in urban landscape. In S.-K. Hong, N. Nakagoshi, B. Fu, & Y. Morimoto (Eds.), Landscape Ecological Applications in Man-Influenced Areas (pp. 129–147). Springer Netherlands. https://doi.org/10.1007/1-4020-5488-2

Parlin, A. F., do Amaral, J. P. S., Dougherty, J. K., Stevens, M. H. H., & Schaeffer, P. J. (2017). Thermoregulatory performance and habitat selection of the eastern box turtle (Terrapene carolina carolina). Conservation Physiology, 5(1). https://doi.org/10.1093/conphys/cox070

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1–4), 23–27.

Rodríguez-Soto, C., Monroy-Vilchis, O., & Zarco- González, M. M. (2013). Corridors for jaguar (Panthera onca) in Mexico: Conservation strategies. Journal for Nature Conservation, 21(6), 438–443.

Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891–904.

Stryszowska, K. M., Johnson, G., Mendoza, L. R., & Langen, T. A. (2016). Species Distribution Modeling of the Threatened Blanding’s Turtle’s ( Emydoidea blandingii ) Range Edge as a Tool for Conservation Planning. Journal of Herpetology, 50(3), 366–373. https://doi.org/10.1670/15-089

Tingley, R., & Herman, T. B. (2009). Land-cover data improve bioclimatic models for anurans and turtles at a regional scale. Journal of Biogeography, 36(9), 1656–1672. https://doi.org/10.1111/j.1365-2699.2009.02117.x

Tingley, R., & Herman, T. B. (2009). Land-cover data improve bioclimatic models for anurans and turtles at a regional scale. Journal of Biogeography, 36(9), 1656–1672. https://doi.org/10.1111/j.1365-2699.2009.02117.x

Vamberger, M., Stuckas, H., Ayaz, D., Graciá, E., Aloufi, A. A., Els, J., Mazanaeva, L. F., Kami, H. G., & Fritz, U. (2013). Conservation genetics and phylogeography of the poorly known Middle Eastern terrapin Mauremys caspica (Testudines: Geoemydidae). Organisms Diversity & Evolution, 13(1), 77–85. https://doi.org/10.1007/s13127-012-0102-6

Velo-Antón, G., Parra, J. L., Parra-Olea, G., & Zamudio, K. R. (2013). Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology, 22(12), 3261–3278. https://doi.org/10.1111/mec.12310

Wan, H., Cushman, S., & Ganey, J. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes, 9(8), 403. https://doi.org/10.3390/genes9080403

Yadollahvand, R., & Kami, H. G. (2014). Habitat changes and its Impacts on the Caspian Pond Turtle (Mauremys caspica) Population in the Golestan and Mazandaran Provinces of Iran. Journal of Aquaculture Research and Development, 5(3), 2–3.

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210

Downloads

Published

2021-03-30

How to Cite

Bardeh, F. G., Ashrafzadeh, M. R., Segherloo, I. H., & Rahimi, R. (2021). Modelling habitat suitability and connectivity of the Caspian ‎pond turtle (Mauremys caspica) in Central Zagros, Iran‎. Journal of Wildlife and Biodiversity, 5(2), 1–14. https://doi.org/10.22120/jwb.2020.131961.1170

Most read articles by the same author(s)