Species distribution modeling and environmental suitability of the Southern crested newt, Triturus karelinii (Strauch, 1870) (Amphibia: Caudata) in Iran


  • Maryam Pourhallaji Department of Environment, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  • Mohamad Dehdar Dargahi Department of Environment, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  • Eskandar Rastegar pouyani Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
  • Haji Gholi Kami Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
  • Mahsa Hakimiabed Department of Environment, Lahijan Branch, Islamic Azad University, Lahijan, Iran.




Amphibia, biodiversity, MaxEnt, Northern Iran, climate change


The southern crested newt, Triturus karelinii (Strauch, 1870), is a newt endemic to the Ponto-Caspian region. We evaluate the potential distribution of this species and identify the most important environmental factors that determine the distribution of this species in Iran. Forty-four presence points and seven environmental variables were used to model the distribution range. Species distribution modeling was performed using the Maximum Entropy algorithm (MaxEnt). Precipitation of the warmest quarter, with 68.60% contribution, and altitude, with 13.70% contribution, were the most important factors determining the distribution of the species. According to our habitat suitability map, the Golestan, Mazandaran, Guilan, and Ardabil provinces are determined as possessing suitable habitat for the species, while the central and southern regions of Iran do not possess suitable habitats, associated with insufficient rainfall.


Anderson, R. P., & Martınez-Meyer, E. (2004). Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116(2), 167-179.

Arntzen, J. W., Themudo, G. E., & Wielstra, B. (2007). The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the center of origin. Contributions to Zoology, 76(4), 261-278.

Baloutch, M., & Kami, H. G. (1995). Amphibians of Iran. Tehran University Publishers.

Bannikov, A. G., Darevsky, I. S., & Rustamov, A. K. (1971). Zemnovodnye i Presmykayushchienya SSSR [Amphibians and Reptiles of the USSR]. Izdatelistvo Misl.

Benito, B. M., Cayuela, L., & Albuquerque, F. S. (2013). The impact of modeling choices in the predictive performance of richness maps derived from species‐distribution models: Guidelines to build better diversity models. Methods in Ecology and Evolution, 4(4), 327-335.

Blaustein, A. R., & Bancroft, B. A. (2007). Amphibian Population Declines Evolutionary Considerations. BioScience, 57(5), 437-444. https://doi.org/10.1641/b570517

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57.

García-Holgado, A., García-Peñalvo, F. J., & Rodríguez-Conde, M. J. (2015). Definition of a technological ecosystem for scientific knowledge management in a Ph.D. Program. Proceedings of the 3rd International Conference on Technological Ecosystems for Enhancing Multiculturality,

Green, D. M., Lannoo, M. J., Lesbarrères, D., & Muths, E. (2020). Amphibian population declines 30 years of progress in confronting a complex problem. Herpetologica, 76(2), 97-100.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.

Hosseinian Yousefkhani, S. S., Ficetola, G. F., Rastegar Pouyani, N., Ananjeva, N. B., Rastegar Pouyani, E., & Masroor, R. (2013). Environmental suitability and distribution of the Caucasian Rock Agama, Paralaudakia Caucasia (Sauria: Agamidae) in western and central Asia.

Kami, H. G. (1997). Rediscovery of the southern crested newt, Triturus (cristatus) karelini (Salamandridae), from its easternmost locality in Iran. Zoology in the Middle East, 15(1), 37-40.

Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modeling to disentangle realized versus potential distributions for rare species conservation. Biological Conservation, 166, 221-230.

Miller, F. G., Colloca, L., & Kaptchuk, T. J. (2009). The placebo effect: illness and interpersonal healing. Perspectives in biology and medicine, 52(4), 518.

Moor, H., Hylander, K., & Norberg, J. (2015). Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio, 44(1), 113-126.

Naderi, G., Mohammadizadeh, M., Khalatbari, M., Ahadirad, R., Lahoot, M., & Kamran, M. (2013). New Record and Habitat Affinities of Southern Crested Newt Triturus karelini (Amphibians: Salamandridae) in Mazandaran Province, Iran. World Journal of Zoology, 8(2), 131-134.

Nasrabadi, R., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Kami, H. G., Gharzi, A., & Yousefkhani, S. (2018). Distribution and Environmental Suitability of the European Glass Lizard Pseudopus apodus (Pallas, 1775) in the Iranian Plateau. Russian Journal of Herpetology, 25(1).

Pearson, R. G. (2007). Species distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50, 54-89.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893.

Rancilhac, L., Irisarri, I., Angelini, C., Arntzen, J. W., Babik, W., Bossuyt, F., Künzel, S., Lüddecke, T., Pasmans, F., & Sanchez, E. (2021). Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 155, 106967.

Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426(6968), 837-841.

Rissler, L. J., Hijmans, R. J., Graham, C. H., Moritz, C., & Wake, D. B. (2006). Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. The American Naturalist, 167(5), 655-666.

Safaei-Mahroo, B., Ghaffari, H., Fahimi, H., Broomand, S., Yazdanian, M., Najafi-Majd, E., Hosseinian Yousefkhani, S. S., Rezazadeh, E., Hosseinzadeh, M. S., & Nasrabadi, R. (2015). The herpetofauna of Iran: checklist of taxonomy, distribution and conservation status. Asian Herpetological Research, 6(4), 257-290.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.

Vitt, L. J., & Caldwell, J. P. (2013). Herpetology: an introductory biology of amphibians and reptiles. Academic press.

Wielstra, B., & Arntzen, J. W. (2020). Genetic homogeneity in a Pontocaspian crested newt species (Triturus karelinii) suggests the recent isolation of its three allopatric range sections. Amphibia-Reptilia, 1(aop), 1-9.

Wielstra, B., McCartney-Melstad, E., Arntzen, J., Butlin, R. K., & Shaffer, H. B. (2019). Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Molecular Phylogenetics and Evolution, 133, 120-127.




How to Cite

Pourhallaji , M., Dargahi , M. D., Rastegar pouyani, E. ., Kami, H. G. ., & Hakimiabed, M. (2021). Species distribution modeling and environmental suitability of the Southern crested newt, Triturus karelinii (Strauch, 1870) (Amphibia: Caudata) in Iran. Journal of Wildlife and Biodiversity, 5(4), 44–52. https://doi.org/10.22120/jwb.2021.530445.1228