Predicting the Potential Distribution of Crataegus azarolus L. under Climate Change in Central Zagros, Iran


  • Ali Asghar Naghipour Dep. of Nature engineering, Faculty of Natural Resources and Earth Sciences, Shahrekord University
  • Sima Teimoori Asl Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
  • Mohammad Reza Ashrafzadeh Faculty of Natural Resources and Earth Sciences, Shahrekord University, 8818634141, Shahrekord, Iran
  • Maryam Haidarian



Habitat suitability, Random Forest, Species distribution modeling, Ensemble modeling


Global climate change has had a significant impact on biodiversity and altered the geographical distribution of many plant species. In this study, ensemble modeling based on seven species distribution models was used to predict the effect of climate change on the spatial distribution of Crataegus azarolus L. in Chaharmahal-Va-Bakhtiari province, located in the Central Zagros region, Iran. We used 113 presence points of the species and physiographic, land cover, and bioclimatic variables. Predicting the geographical distribution of the C. azarolus in the future (years 2050 and 2070) was made based on four scenarios of the increase in the greenhouse gases (RCPs: Representative Concentration Pathways) in the general circulation model of MRI-CGCM3. Based on the results, about 20% (3292.192 km2) of the study area can be considered as the suitable habitat of C. azarolus. Precipitation Seasonality, Isothermality, and Mean Temperature of the Wettest Quarter had the highest contribution to the species distribution model. The decline of suitable habitats will be 31.13% to 89.87% by 2050 and 2070 due to climate change, respectively. Assessments showed that the Random Forest was found to be the most reliable model for species prediction. Our results can provide reliable information on preparing adaptive responses for the sustainable management of the species.

Author Biography

Maryam Haidarian

Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari


Abolmaali, SM-R., Tarkesh, M., & Bashari, H. (2018). Maxent modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43, 116-123.

Ahmadloo, F., Kochaksaraei, M. T., Azadi, P., Hamidi, A., & Beiramizadeh, E. (2015). Effects of pectinase, BAP and dry storage on dormancy breaking and emergence rate of Crataegus pseudoheterophylla Pojark. New Forests, 46(3): 373-386.

Ahn, Y., Lee, D-K., Kim, H. G., Park, C., Kim, J., & Kim J-u. (2015). Estimating korean pine (pinus koraiensis) habitat distribution considering climate change uncertainty-using species distribution models and rcp scenarios. Journal of the Korea Society of Environmental Restoration Technology, 18, 51-64.

Akhter, S., Mcdonald, M. A., van Breugel, P., Sohel, S., Kjær, E. D., & Mariott, R. (2017). Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use policy, 60, 223–232.

Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. (2019). The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Regional Environmental Change, 19(5), 1495-1506.

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.

Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2016). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17, 143-156.

Amiri, M. A., & Mesgari, M. S. (2019). Spatial variability analysis of precipitation and its concentration in Chaharmahal and Bakhtiari province, Iran. Theoretical and Applied Climatology, 137(3-4), 2905-2914.

Amiri, M., Tarkesh, M., & Jafari, R. (2019). Predicting the distribution of Artemisia sieberi Besser under climate change in the steppe and semi-steppe of Iran-Touranian region. Desert Management, 7(13), 29-48. (In Persian)

Arenas-Castro, S., Gonçalves, J., Alves, P., Alcaraz-Segura, D., & Honrado, J. P. (2018). Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling. PLoS One, 13(6), e0199292.

Arslan, E.S., Akyol, A., Örücü, Ö.K., & Sarıkaya, A.G. (2020). Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Regional Environmental Change, 20(3), 1-13.

Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., & Khorozyan, I. (2019a). Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research, 64(1), 39-51.

Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S., & Pilliod, D. S. (2019b). Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation, 19, e00637.

Attarod, P., Sadeghi, S. M. M., Taheri Sarteshnizi, F., Saroyi, S., Abbasian, P., Masihpoor, M., kordrostami, F., & Dirikvandi, A. (2016). Meteorological parameters and evapotranspiration affecting the Zagros forests decline in Lorestan province. Iranian Journal of Forest and Range Protection Research, 13(2), 97-112. (In Persian)

Attorre, F., Alfò, M., De Sanctis, M., Francesconi, F., Valenti, R., Vitale, M., & Bruno, F. (2011). Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Applied Vegetation Science, 14, 242-255.

Bashari, H., Naghipour, A. A., Khajeddin, S. J., Sangoony, H., & Tahmasebi, P. (2016). Risk of fire occurrence in arid and semi-arid ecosystems of Iran: an investigation using Bayesian belief networks. Environmental monitoring and assessment, 188(9), 531.

Blach-Overgaard, A., Balslev, H., Dransfield, J., Normand, S., & Svenning, J-C. (2015). Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 5, 1-10.

Borchert, R. (1998). Responses of tropical trees to rainfall seasonality and its long-term changes. In A. Markham (Ed.), Potential impacts of climate change on tropical forest ecosystems (pp. 241-253). Dordrecht: Springer.

Borchert, R. (1994a). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437-1449.

Borchert, R. (1994b). Water status and development of tropical trees during seasonal drought. Trees, 8(3), 115-125.

Cheng, L., Lek, S., Lek-Ang, S., & Li. Z. (2012). Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica, 42 (2), 127–136.

Eskildsen, A., Roux, P. C., Heikkinen, R. K., Høye, T. T., Kissling, W. D., Pöyry, J., Wisz, M. S., & Luoto, M. (2013). Testing species distribution models across space and time: high latitude butterflies and recent warming. Global Ecology and Biogeography, 22(12), 1293–1303.

Farashi, A., Shariati, M., & Hosseini, M. (2017). Identifying biodiversity hotspots for threatened mammal species in Iran. Mammalian Biology, 87, 71-88.

Fortunel, C., Paine, C. T., Fine, P. V., Kraft, N. J., & Baraloto, C. (2014). Environmental factors predict community functional composition in Amazonian forests. Journal of Ecology, 102(1), 145-155.

Guisan, A., Theurillat, J. P., & Kienast, F. (1998). Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 9(1), 65-74.

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I., et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological modeling, 135, 147-186.

Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., & Tatian, M. (2017a). Predicting the impacts of climate change on Persian oak (Quercus brantii) using species distribution modelling in Central Zagros for conservation planning. Journal of Environmental Studies, 43, 497-511. (In Persian)

Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., & Tatian, M. (2017b). Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros. Journal of RS and GIS for Natural Resources, 8(3), 1-14. (In Persian)

Hyam, R., & Pankhurst, R. (1995). Plants and their names: a concise dictionary. Oxford University Press.

Henderson, E. B., Ohmann, J. L., Gregory, M. J., Roberts, H. M., & Zald, H. (2014). Species distribution modelling for plant communities: stacked single species or multivariate modelling approaches? Applied Vegetation Science, 17(3), 516-527.

Hessl, A., Miller, J., Kernan, J., Keenum, D., & McKenzie, D. (2007). Mapping Paleo‐Fire boundaries from binary point data: comparing interpolation methods. The Professional Geographer, 59(1), 87-104.

Hodd, R. L., Bourke, D., & Skeffington, M. S. (2014). Projected range contractions of European protected oceanic montane plant communities: Focus on climate change impacts is essential for their future conservation. PloS One, 9(4), e95147.

Holtmeier, F. K. (2009). Mountain timberlines: ecology, patchiness, and dynamics (Vol. 36). Springer Science & Business Media.

Ibáñez, I., Katz, D.S., Peltier, D., Wolf, S. M., & Connor Barrie, B. T. (2014). Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess–multiresponse dynamics. Journal of Ecology, 102(4), 882-895.

Jafari, A., Alipour, M., Abbasi, M., & Soltani, A. (2019). Distribution Modeling of Hawthorn (Crataegus azarolus L.) in Chaharmahal & Bakhtiari Province using the maximum entropy method. Journal of Environmental Studies, 45(2), 223-235. (In Persian)

Jaafari, A., Mafi Gholami, D., & Zenner, E. K. (2017). A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics, 39, 32-44.

Jarnevich, C. S., & Reynolds, L. V. (2011). Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biological Invasions, 13(1), 153-163.

IFRWMO. (2014). Iranian forests, range and watershed management organization national land use/land cover map. Forest, Range and Watershed Management Organization of Iran, Tehran. Available at: (Accessed 20 July 2014).

Jarvis, A. M., & Robertson, A. (1999). Predicting population sizes and priority conservation areas for 10 endemic Namibian bird species. Biological Conservation, 88, 121– 131.

Kosanic, A., Anderson, K., Harrison, S., Turkington, T., & Bennie, J. (2018). Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PloS One, 13(2), e0191021.

Kosmas, C., Ferrara, A., Briasouli, H., & Imeson, A. (1999). Methodology for mapping environmentally sensitive areas (ESAs) to desertification. The medalus project Mediterranean desertification and land use. Manual on key indicators of desertification and mapping Environmentally Sensitive Areas to desertification, 31-47.

Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251-1266.

Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1, 094-098.

Ladányi, Z., Blanka, V., Meyer, B., Mezősi, G., & Rakonczai, J. (2015). Multi-indicator sensitivity analysis of climate change effects on landscapes in the Kiskunság National Park, Hungary. Ecological indicators, 58, 8-20.

Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921-931.

Marmion, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 220(24), 3512-3520.

Marino, J., Bennett, M., Cossios, D., Iriarte, A., Lucherini, M., Pliscoff, P., et al. (2011). Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. Diversity and Distributions, 17(2), 311-322.

Mi, C., Huettmann, F., Guo, Y., Han, X., & Wen, L. (2017). Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ, 5, e2849.

Moustafa, A., Zaghloul, M., Mansour, S., & Alotaibi, M. (2019). Conservation Strategy for protecting Crataegus x sinaica against climate change and anthropologic activities in South Sinai Mountains, Egypt. Catrina: The International Journal of Environmental Sciences, 18(1), 1-6.

Naghipour, A. A., Haidarian, M., & Sangoony, H. (2019a). Predicting the impact of climate change on the distribution of Pistacia atlantica in the Central Zagros. Journal of Plant Ecosystem Conservation, 6 (13), 197-214. (In Persian)

Naghipour, A. A., Ostovar, Z., & Asadi, E. (2019b). The Influence of Climate Change on distribution of an Endangered Medicinal Plant (Fritillaria Imperialis L.) in Central Zagros. Journal of Rangeland Science, 9(2), 159-171.

O’Donnell, M. S., & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691(10).

Périé, C., & de Blois, S. (2016). Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes. PeerJ, 4, e2218.

Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography, 12(5), 361-371.

Porfirio, L. L., Harris, R. M., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., et al. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS One, 9(11), e113749.

Rafiee mo, G., Jafari, R., Matinkhah, S. H., Tarkesh isfahani, M., karimzadeh, H. R., & jafari, Z. (2020). Predicting the Potential Habitat Distribution of Crataegus Pontica C. Koch, Using a Combined Modeling Approach in Lorestan Province. Ijae, 9(2), 45-59

Rajpoot, R., Adhikari, D., Verma, S., Saikia, P., Kumar, A., Grant, K. R., et al. (2020). Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecology and Conservation, 23, e01040.

R Development Core Team. (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Sangoony, H., Vahabi, M., Tarkesh, M., & Soltani, S. (2016). Range shift of Bromus tomentellus Boiss. As a reaction to climate change in Central Zagros, Iran. Applied Ecology and Environmental Research, 14(4), 85-100.

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8, e71218.

Shirk, A. J., Cushman, S. A., Waring, K. M., Wehenkel, C. A., Leal-Sáenz, A., Toney, C., et al. (2018). Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. Forest Ecology and Management, 411, 176–186.

Sagheb-Talebi, K. S., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran. In A Treasure from the Past, a Hope for the Future. Dordrecht: Springer publication.

Taleshi, H., Jalali, S. G., Alavi, S. J., Hosseini, S. M., Naimi, B., & Zimmermann, N. E. (2019). Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Regional Environmental Change, 19(8), 2711-2728.

Tarkesh, M., & Jetschke, G. (2016). Investigation of current and future potential distribution of astragalus gossypinus in central iran using species distribution modelling. Arabian Journal of Geosciences, 9, 1-11.

Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., & Thuiller, C. W. (2016). Package ‘biomod2’. biomod2.

Uğurlu, E., & Oldeland, J. (2012). Species response curves of oak species along climatic gradients in Turkey. International Journal of Biometeorology, 56(1), 85-93.

Wang, T., Campbell, E. M., O’Neill, G. A., & Aitken, S. N. (2012). Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management, 279, 128-140.

Watson, J. E., Rao, M., Ai-Li, K. & Yan, X. (2012). Climate change adaptation planning for biodiversity conservation: A review. Advances in Climate Change Research, 3(1), 1-11.

Williams, S. E., & Hero, J. M., (2001). Multiple determinants of Australian tropical frog biodiversity. Biological Conservation 98, 1–10.

Xu, Z., Zhao, C., & Feng, Z. (2009). A study of the impact of climate change on the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains. Acta Ecologica Sinica, 29(5), 278-285.

Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., & Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological engineering, 51, 83-87.

Zomer, R. J., Xu, J., Wang, M., Trabucco, A., & Li, Z. (2015). Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biological Conservation, 184, 335-345.

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14.




How to Cite

Naghipour, A. A. ., Asl, S. T. ., Ashrafzadeh , M. R., & Haidarian, M. (2021). Predicting the Potential Distribution of Crataegus azarolus L. under Climate Change in Central Zagros, Iran. Journal of Wildlife and Biodiversity, 5(4), 28–43.