Habitat desirability modeling of Goitered Gazelle (Gazella subgutturosa) by Ecological Niche Factor Analysis in the Bidouyeh Protected Area, Iran

Authors

  • Abbas Naqibzadeh
  • Jalil Sarhangzadeh
  • Nader Sayedi

DOI:

https://doi.org/10.22120/jwb.2021.528662.1223

Keywords:

SDMs, ENFA, Biomapper, Bidouyeh Protected Area, Goitered Gazelle

Abstract

Species distribution models (SDMs) are a powerful tool in conservation. Predictive habitat models attempt to provide detailed predictions of distributions by relating the presence/absence of a species to a set of environmental predictors that are likely to influence the suitability of the environment for the focal species. For most of the available methods, accurate sampling of the presence/absence of the species is crucial. The lack of information about the areas where species are absent complicates the use of common ecological modeling tools, as they rely both on presence and absence data. For this reason, a modeling technique that does not require absence data was used. This modeling approach is extremely useful when absence data are not available, are unreliable, or are ecologically meaningless. So, one statistical technique that can be used to generate habitat maps based on the presence-only data is the Ecological Niche Factor Analysis (ENFA), using the modeling Biomapper software. The purpose of this study is to provide desirable habitats in Bidouyeh Protected Area in Kerman province based on the presence-only data and environmental conditions of the area by ENFA, to determine which parts according to the current conditions of the region are suitable habitat for Goitered Gazelle (Gazella subgutturosa). according to the Predicted areas, we will be able to better protect and manage the area. The results showed that variables the elevations 2000-2300 m, the western aspects, and the sealed road, respectively, are the most important factors influencing the selection of Goitered Gazelle habitat in Bidouyeh protected area. According to the modeling, approximately 15% of the Bidouyeh protected area is a suitable habitat for Goitered Gazelle.

References

Akcakaya, H. R., & Atwood, J. L. (1997). A habitat-based metapopulation model of the California gnatcatcher. Conservation Biology, 11(2), 422-434. https://doi.org/10.1046/j.1523-1739.1997.96164.x.

Akcakaya, H. R., McCarthy, M. A., & Pearce, J. L. (1995). Linking landscape data with population viability analysis: management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 73(2), 169-176. https://doi.org/10.1016/0006-3207(95)90045-4.

Allouche, O., Steinitz, O., Rotem, D., Rosenfeld, A., & Kadmon, R. (2008). Incorporating distance constraints into species distribution models. Journal of Applied Ecology, 45(2), 599-609. https://doi.org/10.1111/j.1365-2664.2007.01445.x.

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends Ecology Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010.

Ashouri Rad, A., Rahimi, R., & Shams Esfandabad, B. (2017). Modeling habitat suitability for Goitered Gazelle (Gazella subgutturosa) in Sorkheh Hesar national park. Journal of Environmental Science and Technology, 19(4), 193-207.

Barbosa, M. A., Sillero, N., Martínez-Freiría, F., & Real, R. (2012). Ecological Niche Models in Mediterranean Herpetology: Past, Present and Future. Ecological Modeling. 173-204.

Boyce, M. S., & McDonald, L. L. (1999). Relating populations to habitats using resource selection functions. Trends Ecology Evolution, 14(7), 268-272. https://doi.org/10.1016/S0169-5347(99)01593-1.

Breitenmoser, U., Zimmermann, F., Olsson, P., Ryser, A., Angst, C., Jobin, A., & Breitenmoser-Wursten, C. (1999). Beurteilung des Kantons st.Gallen als habitat fur den luchs. KORA, Bern.

Bryan, L. T., & Metaxas, A. (2007). Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific Continental Margins of North America. Marine Ecology Progress Series, 330. 113-126. doi:10.3354/meps330113.

Buckland, S. T., & Elston, D. A. (1993). Empirical models for the spatial distribution of wildlife. Applaid Ecology, 30(3), 478-495. https://www.jstor.org/stable/2404188.

Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3-4), 516-519. https://doi.org/10.1016/j.ecolmodel.2006.03.017.

Cassinello, J., Acevedo, P., & Hortal, J. (2006). Prospects for population expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the Iberian Peninsula: clues from habitat suitability modeling. Diversity and Distributions, 12(6), 666-678. https://doi.org/10.1111/j.1472-4642.2006.00292.x.

Chefaoui, M. R., & Lobo, M. J. (2007). Assessing the conservation status of an Iberian moth using pseudo-absences. Wildlife Management, 71(8), 2507-2516. https://doi.org/10.2193/2006-312.

Cisneros-Araujo, P., Goicolea, T., Mateo-Sánchez, C. M., García-Viñás, I. J., Marchamalo, M., Mercier, A., & Gastón, A. (2021). The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear. remote sensing. 13(1138), 1-22. https://doi.org/10.3390/rs13061138.

Dormann, F. C., McPherson, M. J., Araujo, B. M., Bivand, R., Bolliger. J., Carl, G., Davies, G. R., Hirzel, A., Jetz, W., Kissling, W. D., Kuhn, I., Ohlemuller, R., Peres-Neto, R. P., Reineking, B., Schroder, B., Schurr, M. F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecograph, 30(5), 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x.

Elith, J., Graham, H. C., Anderson, P. R., Dudik, M., Ferrier, S., Guisan, A., Hijmans, J. R., Huettmann, F., Leathwick, R. J., Lehmann, A., Loiselle, A. B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, M. M. J., Peterson, T. A., Phillips, J. S., Richardson, K., Scachetti-Pereira, R., Schapire, E. R., Soberon, J., Williams, S., Wisz, S. M., & Zimmermann, E. N. (2006). Novel methods improve the prediction of species distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

Elith, J., Phillips, J. S., Hastie, T., Dudık, M., Chee, E. Y., & Yates, J. C. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

Estrada-Pena, A., & Venzal, M. J. (2007). Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. Medical Entomology, 44(6), 1130-1138. https://doi.org/10.1093/jmedent/44.6.1130.

Evcin, O., Kucuk, O., & Akturk, E. (2019). Habitat suitability model with maximum entropy approach for European roe (Capreolus capreolus) in the Black Sea Region. Environmental Monitoting Assessment, 191, 669. https://doi.org/10.1007/s10661-019-7853-x.

Evcin, O., Kucuk, O., & Akturk, E. (2019). Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental Monitoring Assessment. 191(669), 1-13. https://doi.org/10.1007/s10661-019-7853-x.

Fattahi, R., Ficetola, G. F., Rastegar-Pouyani, N., Avcı, A., Kumlutaş, Y., Ilgaz, Ç., & Hosseinian Yousefkhani, S. S. (2014). Modeling the potential distribution of the Bridled Skink, Trachylepis vittata (Olivier, 1804), in the Middle East. Zoology in the Middle East, 60(3), 208-216.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088.

Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge University Press Cambridge, UK.

Guilbault, E., Renner, I., Mahony, M., & Beh, E. (2019). Classification of unlabelled observations in Species Distribution Modelling using Point Process Models. https://doi.org/10.1101/651125.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modeling, 135(2-3), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9.

Gür, H. (2013). The effects of the Late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods? Biological Journal of the Linnean Society, 109(1), 19-32.

Hirzel, A. H. (2001). When GIS comes to life. linking landscape and population ecology for large population management modeling: the case of Ibex (Capra ibex) in Switzerland p. 106. Institute of Ecology, Laboratory for Conservation Biology, University of Lausanne, Lausanne, Switzerland.

Hirzel, A. H., & Arlettaz, R. (2003a). Modeling habitat suitability for complex species distribution by environmental distance geometric mean, Springer Verlag. Environmental Management, 32, 614-623. https://doi.org/10.1007/s00267-003-0040-3.

Hirzel, A. H., Halfer, V., & Metral, F. (2001). Assessing habitat suitability models with a virtual species. Ecological Modelling, 145(2-3), 111-121. https://doi.org/10.1016/S0304-3800(01)00396-9.

Hirzel, A. H., Hausser, J., & Perrin, N. (2004). Biomapper 3.1.Division of Conservation Biology, University of Bern. Available at http://www.unil.ch/biomapper.

Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological niche factor analysis: How to compute habitat suitability maps without absence data?. Ecology, 83(7), 2027-2036. https://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2.

Hirzel, H. A. (2008). Using the relative capacity to measure habitat suitability. Israel Journal of Ecology and Evolution, 54(3-4), 421-434. https://doi.org/10.1560/IJEE.54.3-4.421.

Hirzel, H. A., & Arlettaz, R. (2003b). Environmental-Envelope-based habitat-suitability models. 67-76.

Hirzel, H. A., & Le Lay, G. (2008). Habitat suitability modeling and niche theory. Journal of Applied Ecology, 45(5), 1372-1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x.

Hirzel, H. A., Le lay, G., Helfer, V., Randin, Ch., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological modeling, 199(2), 142-152. https://doi.org/10.1016/j.ecolmodel.2006.05.017.

Hoseinnejad, Z., Sheykhi, A., Goshtasb, H., Nezami, B., & Jahani, A. (2019). Habitat Evaluation of Alectoris Chukar using Ecological Niche Factor Analysis (ENFA)(Case study: Eshkevarte NO-Hunting Area). Environmental Researches, 10(19), 179-186.

Hu, J., & Jiang, Z. (2010). Predicting the potential distribution of the endangered Przewalski’s gazelle. Zoology, 282(1), 54-63. https://doi.org/10.1111/j.1469-7998.2010.00715.x.

IUCN SSC Antelope Specialist Group. (2017). Gazella subgutturosa. The IUCN Red List of ThreatenedSpecies2017:e.T8976A50187422. http://dx.doi.org/10.2305/IUCN.UK.20172.RLTS.T8976A50187422.en.

Jiménez-Valverde, A., Gómez, F. J., Lobo, M. J., Baselga, A., & Hortal, J. (2008). Challenging species distribution models: the case of Maculinea nausithous in the Iberian Peninsula. Annual Zoology. Fennici, 45(3), 200-210. https://doi.org/10.5735/086.045.0305.

Kurnaz, M., & Şahin, M. K. (2021). A contribution to the biogeography and taxonomy of two Anatolian mountain brook newts, Neurergus barani and N. strauchii (Amphibia: Salamandridae) using ecological niche modeling. Turkish Journal of Zoology, 45(1), 54-64.

Le Lay, G., Clergeau, P., & Hubert-Moy, L. (2001). Computerized map of risk to manage wildlife species in urban areas. Environmental Management, 27, 451-461. https://doi.org/10.1007/s002670010161.

Lehmann, A., Overton, J. M., & Austin, M. P. (2002). Regression models for spatial prediction: their role for biodiversity and conservation. Biodiversity and Conservation, 11, 2085-2092. https://doi.org/10.1023/A:1021354914494.

Long, R. P., Zefania, S., French-Constant, H. R., & Szekely, T. (2008). Estimating the population size of an endangered shorebird, the Madagascar plover, using a habitat suitability model. Animal Conservation, 11(2), 118-127. https://doi.org/10.1111/j.1469-1795.2008.00157.x.

MacArthur, R. (1957). On the relative abundance of bird species, proceedings of the national academy of sciences of the United States of America. Proc Natl Acad Sci USA, 43(3), 293-295. https://dx.doi.org/10.1073%2Fpnas.43.3.293.

Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence-absence models in ecology: the need to account for prevalence. Applaid Ecology, 38(5), 921-931. https://doi.org/10.1046/j.1365-2664.2001.00647.x.

Manly, B. F., McDonald, L. L., Thomas, D. L., McDonald, T. L., & Erickson, W. P. (2002). Resource selection by animals: statistical design and analysis for field studies, 2nd ed Kluwer Academic Publishers, Dordrecht.

Mladenoff, D. J., Haight, R. C., Sickley, T. A., & Wydeven, A. P. (1997). Causes and implications of species restoration in altered ecosystems. A spatial landscape projection of wolf population recovery. Bioscience, 47(1), 21-31. https://www.jstor.org/stable/1313003.

Naimi, B., Hamm, A. S. N., Groen, A. T., Skidmore, K. A., & Toxopeus, G. A. (2014). Where is positional uncertainty a problem for species distribution modeling?. Ecography, 37(2), 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x.

Olson, K. A., Fuller, T. K., Mueller, T., Murray, M. G., & Nicolson, C. (2010). Annual movements of Mongolian gazelles: nomads in the eastern steppe. Arid Environments, 74(11), 1435-1442. https://doi.org/10.1016/j.jaridenv.2010.05.022.

Palma, L., Beja, P., & Rodgrigues, M. (1999). The use of sighting data to analyze Iberian lynx habitat and distribution. Applaid Ecology, 36(5), 812-824. https://doi.org/10.1046/j.1365-2664.1999.00436.x.

Pearce, J. L., & Boyce, M. S. (2006). Modeling distribution and abundance with presence-only data. Applaid Ecology, 43(3), 405-412. https://doi.org/10.1111/j.1365-2664.2005.01112.x.

Phillips, J. A., & Dudık, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Radnezhad, H., Moshtaghie, M., Amoeian, I., & Jamali, A. (2016). Modeling the distribution of (Gazella subgutturosa) in Bamboo National Park with maximum entropy methods: (MAXENT). Journal of Animal Environment, 8(2), 17-27.

Reutter, B. A., Helfer, V., Hirzel, H. A., & Vogel, P. (2003). Modeling habitat-suitability on the base of museum collections: an example with three sympatric Apodemus species from the Alps. Biogeography, 30(4), 581-590. https://doi.org/10.1046/j.1365-2699.2003.00855.x.

Rouhi, H., Tahsini, H., Salman Mahini, A., & Rezaei, H. (2018). Modeling Habitat Suitability of Persian Leopard (Pantera pardus saxicolous) in Khoshyeilagh Wildlife refuge using ENFA method. Journal of Animal Environment, 10(4), 13-22.

Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modeling species distributions?. Applied Ecology, 41(2), 193-200. https://doi.org/10.1111/j.0021-8901.2004.00903.x.

Sanchez-Zapata, J. A., & Calvo, J. F. (1999). Raptor distribution about landscape composition in semi-arid Mediterranean habitats. Applaid Ecology, 36(2), 254-262. https://doi.org/10.1046/j.1365-2664.1999.00396.x.

Santos, X., Brito, C. J., Sillero, N., Pleguezuelos, M. J., Llorente, A. G., Fahd, S., & Parellada, X. (2006). Inferring habitat-suitability areas with ecological modeling techniques and GIS: A contribution to assess the conservation status of Vipera latest. Biological Conservation, 130(3), 416-425. https://doi.org/10.1016/j.biocon.2006.01.003.

Segurado, P., & Araujo, M. B. (2004). An evaluation of methods for modeling species distributions. Biogeography, 31(10), 1555-1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x.

Shams-Esfandabad, B., Ahmadi, A., & Yusefi, T. (2019). Seasonal changes in the distribution of suitable habitats for the Persian goitered Gazelle (Gazella subgutturosa) in Isfahan Province. Journal of Wildlife and Biodiversity, 3(1): 58-65.

Sharma, S., Arunachalam, K., Bhavsar, D., & Kala, R. (2018). Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants. 2-8. https://doi.org/10.1016/j.jarmap.2018.02.003.

Skov, H., Humphreys, E., Garthe, S., Geitner, K., Gremillet, D., Hamer, C. K., Hennicke, J., Parner, H., & Wanless, S. (2008). Application of habitat suitability modeling to tracking data of marine animals as a means of analyzing their feeding habitats. Ecological modeling, 212(3-4), 504-512. https://doi.org/10.1016/j.ecolmodel.2007.11.006.

Soberón, J. (2007). Grinnellian and Estonian niches and geographic distributions of species. Ecological Letter, 10(12), 1115-1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x.

Song, W., Kim, E., Lee, D., Lee, M., & Jeon, S. (2013). The sensitivity of species distribution modeling to scale differences. Ecol Mod, 248, 113-118. https://doi.org/10.1016/j.ecolmodel.2012.09.012.

Suleman, S., Khan, A. W., Anjum, M. K., Shehzad, W., & Hashemi, M. G. S., (2020). Habitat suitability index (HSI) model of Punjab urial (Ovis veggie punjabiensis) in Pakistan. Animal Plant Science, 30(1).

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Applied Ecology, 47, 5-14. https://doi.org/10.1111/j.1365-2664.2009.01737.x.

Traill, W. L., & Bigalke, C. R. (2006). A presence-only habitat suitability model for large grazing African ungulates and its utility for wildlife management. Ecology, 45(3), 347-354. DOI: 10.1111/j.1365-2028.2006.00717.x.

Waltert, M., Meyer, B., Shanyangi, M. W., Balozi, J. J., Kitwara, O., Qolli, S., Krischke, H., & Muehlenberg, M. (2008). Foot surveys of large mammals in woodlands of western Tanzania. Wildlife Management, 72(3), 603-610. https://doi.org/10.2193/2006-456.

Wisdom, M. J., Nielson, M. R., Rowland, M. M., & Proffitt, M. K. (2020). Modeling Landscape Use for Ungulates: Forgotten Tenets of Ecology, Management, and Inference. Frontiers in Ecology and Evolution. 8(211), 1-19. DOI: 10.3389/fevo.2020.00211.

Wu, W., Li, Y., & Hu, Y. (2016). Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China. PeerJ, 4, e1756. https://doi.org/10.7717/peerj.1756.

Wunderlich, F. R., Lin, P. Y., Anthony, J., & Petway, R. J. (2019). Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nature Conservation, 35, 97-116. doi:10.3897/natureconservation.35.33918.

Yusefi, H. G., Faizolahi, K., Darvish, J., Safi, K., & Brito, C. J. (2019). The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. Journal of Mammalogy. 100(1):55–71. DOI:10.1093/jmammal/gyz002.

Zaniewski, A., Lehmann, A., & Overton, J. M. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157(2-3), 261-280. https://doi.org/10.1016/S0304-3800(02)00199-0.

Downloads

Published

2021-12-30

How to Cite

Naqibzadeh, A. ., Sarhangzadeh, J. ., & Sayedi, N. . (2021). Habitat desirability modeling of Goitered Gazelle (Gazella subgutturosa) by Ecological Niche Factor Analysis in the Bidouyeh Protected Area, Iran. Journal of Wildlife and Biodiversity, 5(4), 15–27. https://doi.org/10.22120/jwb.2021.528662.1223