Impact of climate change on endemic birds of the Indian cubcontinent: ecological consequences and challenges
DOI:
https://doi.org/10.5281/zenodo.17308162Keywords:
Climate variation, Endemic bird species, Species distribution model, Indian SubcontinentAbstract
The increase in global temperature may pose a risk of extinction to many endemic bird species of the Subcontinent by the end of the 21st century. This region, being ranked as one of the most vulnerable regions to climate change, is experiencing the shifting and contraction of species ranges. The distribution data on four endemic bird species (sub-continent) viz. Ardeotis nigriceps, Dendrocopos assimilis, Passer pyrrhonotus, and Terpsiphone paradisi, were studied regarding their present and future habitat suitability in the ongoing climate change scenario. We used present and future climate variables from Worldclim and occurrence records obtained from GBIF in the present study. To simulate the present (normal range for 1980-2019) while for future (2050 and 2070) species distribution, we used the model maximum entropy approach (MaxEnt) and generalized linear model (GLM) by using to future peak scenarios of carbon emission RCP 4.5 and RCP 8.5 and two circulation models for 2050 and 2070. Our results showed that under these two climate scenarios, the distribution of species projected towards the altitudes of the east and north, and the latitudes of the north. As well as the accuracy of our species distribution model, it predicted the high climatic suitability towards altitudes of the east and north regions of the Subcontinent for endemic species. Across the eastern regions, one-third that was projected to drop by the end of 2050 as well as one-half by the end of 2070 of the present habitat. Our study highlighted the risks for endemic species of the subcontinent due to future environmental changes, and such findings are useful for policymakers to moderate the negative effects of future climate on these species within the Subcontinent.
References
Abbasi, M. A., Parveen, S., Khan, S., & Kamal, M. A. (2020). Urbanization and energy consumption effects on carbon dioxide emissions: evidence from the Asian-8 countries using panel data analysis. Environmental Science and Pollution Research, 27(15), 18029–18043. https://doi.org/10.1007/s11356-020-08262-w
Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16(3), 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x
Adil, L., Eckstein, D., Künzel, V., & Schäfer, L. (2025). Climate Risk Index 2025. Germanwatch. https://www.germanwatch.org/en/cri
Ali, S., Kiani, R. S., Reboita, M. S., Dan, L., Eum, H., Cho, J., Dairaku, K., Khan, F., & Shreshta, M. L. (2021). Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. International Journal of Climatology, 41(1), 559–581. https://doi.org/10.1002/joc.6638
Barnagaud, J.-Y., Devictor, V., Jiguet, F., Barbet-Massin, M., Le Viol, I., & Archaux, F. (2012). Relating Habitat and Climatic Niches in Birds. PLoS ONE, 7(3), e32819. https://doi.org/10.1371/journal.pone.0032819
BirdLife, I. (2018). State of the world’s birds: taking the pulse of the planet. https://www.birdlife.org/sowb2018
Briga, M., & Verhulst, S. (2015). Large diurnal temperature range increases bird sensitivity to climate change. Scientific Reports, 5(1), 16600. https://doi.org/10.1038/srep16600
Brown, J. L. (2014). SDM toolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
Cavalcanti, L. M. P., Paiva, L. V. de, & França, L. F. (2016). Effects of rainfall on bird reproduction in a semi-arid Neotropical region. Zoologia (Curitiba), 33(6), e20160018. https://doi.org/10.1590/s1984-4689zool-20160018
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432
Chhetri, B., Badola, H. K., & Barat, S. (2021). Modelling climate change impacts on distribution of Himalayan pheasants. Ecological Indicators, 123, 107368. https://doi.org/10.1016/j.ecolind.2021.107368
Dai, Y., Peng, G., Wen, C., Zahoor, B., Ma, X., Hacker, C. E., & Xue, Y. (2021). Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Science of The Total Environment, 777, 146207. https://doi.org/10.1016/j.scitotenv.2021.146207
de Moraes, K. F., Santos, M. P. D., Gonçalves, G. S. R., de Oliveira, G. L., Gomes, L. B., & Lima, M. G. M. (2020). Climate change and bird extinctions in the Amazon. PLOS ONE, 15(7), e0236103. https://doi.org/10.1371/journal.pone.0236103
Dean, W. R. J., Barnard, P., & Anderson, M. D. (2009). When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. South African Journal of Science, 105(1/2), 24–28. https://doi.org/10.4102/sajs.v105i1/2.7
Elith, J., & Franklin, J. (2013). Species Distribution Modeling. In Encyclopedia of Biodiversity (pp. 692–705). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00318-X
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Eyres, A., Böhning‐Gaese, K., & Fritz, S. A. (2017). Quantification of climatic niches in birds: adding the temporal dimension. Journal of Avian Biology, 48(12), 1517–1531. https://doi.org/10.1111/jav.01308
Freeman, B., Sunnarborg, J., & Peterson, A. T. (2019). Effects of climate change on the distributional potential of three range-restricted West African bird species. The Condor, 121(2), duz012. https://doi.org/10.1093/condor/duz012
Gonçalves, G. S. R., Cerqueira, P. V., Silva, D. P., Gomes, L. B., Leão, C. F., Andrade, A. F. A. de, & Santos, M. P. D. (2023). Multi-temporal ecological niche modeling for bird conservation in the face of climate change scenarios in Caatinga, Brazil. PeerJ, 11, e14882. https://doi.org/10.7717/peerj.14882
Hargreaves, A. L., Samis, K. E., & Eckert, C. G. (2014). Are Species’ Range Limits Simply Niche Limits Writ Large? A Review of Transplant Experiments beyond the Range. The American Naturalist, 183(2), 157–173. https://doi.org/10.1086/674525
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biology, 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157
Kabir, M., Hameed, S., Ali, H., Bosso, L., Din, J. U., Bischof, R., Redpath, S., & Nawaz, M. A. (2017). Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLOS ONE, 12(11), e0187027. https://doi.org/10.1371/journal.pone.0187027
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150. https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101150
Kamyo, T., & Asanok, L. (2020). Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Science and Technology, 16(1), 1–7. https://doi.org/10.1080/21580103.2019.1687108
Khan, A. A., Khaliq, I., Choudhry, M. J. I., Farooq, A., & Hussain, N. (2008). Status, threats and conservation of the Great Indian Bustard Ardeotis nigriceps (Vigors) in Pakistan. Current Science, 95(8), 1079–1082. http://www.jstor.org/stable/24102659
Khan, N. A., Gao, Q., Abid, M., & Shah, A. A. (2021). Mapping farmers’ vulnerability to climate change and its induced hazards: evidence from the rice-growing zones of Punjab, Pakistan. Environmental Science and Pollution Research, 28(4), 4229–4244. https://doi.org/10.1007/s11356-020-10758-4
Kumar, V., & Chopra, A. K. (2009). Impact of climate change on biodiversity of India with special reference to Himalayan region-An overview. Journal of Applied and Natural Science, 1(1), 117–122. https://doi.org/10.31018/jans.v1i1.48
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barrett, K. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University.
Lees, A. C., Haskell, L., Allinson, T., Bezeng, S. B., Burfield, I. J., Renjifo, L. M., Rosenberg, K. V, Viswanathan, A., & Butchart, S. H. M. (2022). State of the world’s birds. Annual Review of Environment and Resources, 47(1), 231–260. https://doi.org/https://doi.org/10.1146/annurev-environ-112420-014642
Lenoir, J., & Svenning, J. (2015). Climate‐related range shifts – a global multidimensional synthesis and new research directions. Ecography, 38(1), 15–28. https://doi.org/10.1111/ecog.00967
Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058
Malik, S., Awan, H., & Khan, N. (2012). Mapping vulnerability to climate change and its repercussions on human health in Pakistan. Globalization and Health, 8(1), 31. https://doi.org/10.1186/1744-8603-8-31
Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate‐change refugia: biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18(5), 228–234. https://doi.org/10.1002/fee.2189
Pachauri, R. K., & Reisinger, A. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Ipcc. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf
Penteriani, V., Zarzo‐Arias, A., Novo‐Fernández, A., Bombieri, G., & López‐Sánchez, C. A. (2019). Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Global Change Biology, 25(3), 1133–1151. https://doi.org/10.1111/gcb.14564
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Powers, R. P., & Jetz, W. (2019). Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change, 9(4), 323–329. https://doi.org/10.1038/s41558-019-0406-z
RAXWORTHY, C. J., PEARSON, R. G., RABIBISOA, N., RAKOTONDRAZAFY, A. M., RAMANAMANJATO, J., RASELIMANANA, A. P., WU, S., NUSSBAUM, R. A., & STONE, D. A. (2008). Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14(8), 1703–1720. https://doi.org/10.1111/j.1365-2486.2008.01596.x
Singh, P. B., Mainali, K., Jiang, Z., Thapa, A., Subedi, N., Awan, M. N., Ilyas, O., Luitel, H., Zhou, Z., & Hu, H. (2020). Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia. Scientific Reports, 10(1), 1511. https://doi.org/10.1038/s41598-020-58111-6
Sutton, L. J. (2020). Climatic Constraints on Laggar Falcon (Falco jugger) Distribution Predicts Multidirectional Range Movements under Future Climate Change Scenarios. Journal of Raptor Research, 54(1), 1. https://doi.org/10.3356/0892-1016-54.1.1
Tyrberg, T. (2010). Avifaunal responses to warm climate: the message from Last Interglacial faunas. In Proceedings of the VII International Meeting of the Society of Avian Paleontology and Evolution, ed. W.E. Boles and T.H. Worthy. Records of the Australian Museum, 62(1), 193–205. https://doi.org/10.3853/j.0067-1975.62.2010.1543
Velásquez-Tibatá, J., Salaman, P., & Graham, C. H. (2013). Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 13(2), 235–248. https://doi.org/10.1007/s10113-012-0329-y
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342. https://doi.org/10.1890/10-1171.1
Weyant, J. P. (2009). A perspective on integrated assessment. Climatic Change, 95(3–4), 317–323. https://doi.org/10.1007/s10584-009-9612-4
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
Yasin, M. (2021). Impact of climate changes on the diurnal behaviour of some passerines in some selected habitats of central Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 58(04), 1177–1184. https://doi.org/10.21162/PAKJAS/21.35
Zahoor, B., Liu, X., Ahmad, B., Kumar, L., & Songer, M. (2021). Impact of climate change on Asiatic black bear ( Ursus thibetanus ) and its autumn diet in the northern highlands of Pakistan. Global Change Biology, 27(18), 4294–4306. https://doi.org/10.1111/gcb.15743
Zahoor, B., Liu, X., Kumar, L., Dai, Y., Tripathy, B. R., & Songer, M. (2021). Projected shifts in the distribution range of Asiatic black bear (Ursus thibetanus) in the Hindu Kush Himalaya due to climate change. Ecological Informatics, 63, 101312. https://doi.org/10.1016/j.ecoinf.2021.101312
Zahoor, B., Liu, X., & Songer, M. (2022). The impact of climate change on three indicator Galliformes species in the northern highlands of Pakistan. Environmental Science and Pollution Research, 29(36), 54330–54347. https://doi.org/10.1007/s11356-022-19631-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.