Climate change and Pentaclethra macrophylla Benth: Forecasting alterations in native distributional range across West and Central Africa

Authors

  • Akwaji Patrick Ishoro Department of Plant and Ecological Studies, Faculty of Biological Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
  • Onah Dough Owojoku Department of Plant and Ecological Studies, Faculty of Biological Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
  • Ajikah Linus Bashie Department of Plant and Ecological Studies, Faculty of Biological Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
  • Oden Glory Nicholas Department of Plant and Ecological Studies, Faculty of Biological Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
  • Okon Ekeng Ita Department of Plant Sciences and Biotechnology, Faculty of Biological Sciences, University of Cross River State (Unicross), Calabar, Cross River State, Nigeria
  • Nkang Nkoyo Ani Department of Science Laboratory Technology, Faculty of Biological Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
  • Amaraizu Mary Nneoma Faculty of Law, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
  • Ugbogu Omokafe Alaba Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria (FRIN), Jericho Hills, Ibadan, Oyo State, Nigeria

DOI:

https://doi.org/10.5281/zenodo.13835195

Keywords:

Forecast, Tree species, MaxEnt model

Abstract

The tree species known as the African oil bean (Pentaclethra macrophylla Benth) retains numerous applications. For rural residents, almost all of its traded elements represent a significant source of income. Numerous terrestrial habitats have reportedly experienced negative biological, temporal, and spatial effects concerning climate change lately. Understanding the out-turn of changing climate towards the geographic distribution of species could help predict their growth or decline and, if necessary, provide appropriate conservation measures. We examined whether climate change will affect the geographical distribution of this species throughout its native distributional area across West and Central Africa in light of the strong interest that this species holds for rural African residents. Under AfriClim RCP 8.5 scenario 2070 conditions, the inquiry was carried out by applying the MaxEnt model. According to the MaxEnt results, climate change shall hold a major footprint toward species' native spread. About 5% (5889 km2) of the nations across West and Central Africa are predicted to have stable species populations. These are mostly the regions located along the southern coasts of Guinea Bissau, Sierra Leone, Liberia, Cote d'Ivoire, Nigeria, Cameroon, and Gabon. The model threshold indicated a huge 95.29% (119135.9 km2) reduction in the species' appropriate habitat. The southern coasts of Senegal, Ghana, Togo, and the Benin Republic, along with the Democratic Republic of the Congo, are predicted to be unsuitable, as are the topmost northern portions associated with the Sahel regions of West and Central African countries. Additionally, it is expected that the entire Burkina Faso, Central African Republic, Democratic Republic of the Congo, and south-eastern Angola will no longer be appropriate for the species. It is necessary to build up the preservation of the species by raising and establishing it in the anticipated suitable areas/agroforestry plan to ensure its sustainable usage and practicable conservation.

References

Abbiw, D. (1990). Useful plants of Ghana. Intermediate Technology Publications & the Royal Botanical Gardens (p.65). Kew Press.

Abrahms, B., Dipietro, D., Graffis, A. & Hollander, A. (2017). Managing biodiversity under climate change: challenges, frameworks, and tools for adaptation. Biodiversity Conservation, 20, 1-17.

Allouche, O., Tsoar, A. & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.

Altamiranda-Saavedra, M., Arboleda, S., Parra, J. L., Peterson, A. T. & Correa, M. M. (2017). Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia. PLoS ONE, 12(6), e0179093.

Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J. & Lohmann, L. G. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129-151.

Bentz, B. J., Regniere, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G., Negron, J. F. & Seybold, S. J. (2010). Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. Bioscience, 60, 602-613.

Blach-Overgaard, A., Svenning, J. C., Dransfield, J., Greve, M. & Balslev, H. (2010). Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography, 33, 380-391.

Bowe, C. & Haq, N. (2010). Quantifying the global environmental niche of an underutilised tropical fruit tree (Tamarindus indica) using herbarium records. Agriculture, Ecosystems and Environment, 139, 51-58.

Breiner, F. T., Guisan, A., Nobis, M. P. & Bergamini, A. (2017). Including environmental niche information to improve IUCN red list assessments. Diversity and Distribution, 23, 484-495.

Busby, J. W., Smith, T. G., White, K. L. & Strange, S. M. (2010). Locating climate insecurity: where are the most vulnerable places in Africa? Austin, TX, USA: University of Texas, The Robert Strauss Centre for International Security and Law, Climate Change and African Political Stability (CCAPS) Programme.

Christie, D. A. & Armesto, J. J. (2003). Regeneration at micro site and tree species co-existence in temperate rainforest of Chilue Island, Chile. Journal of Ecology, 91, 776-784.

Cuni-Sanchez, A., Osborne, P. E. & Haq, N. (2010). Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agroforestry Systems, 80, 191-201.

Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. (2017). Using coarse-scale species distribution data to predict extinction risk in plants. Diversity and Distribution, 23, 435-447.

Djotan, A. K. G., Aoudji, A. K. N., YehouenouTessi, D. R., Kakpo, S. B., Gbetoho, J. A., Koura, K. & Ganglo, J. C. (2018). Vulnerability of Khaya senegalensis Desr. and Juss. to climate change and to the invasion of Hypsipy larobusta Moore in Benin (west Africa). International Journal of Biology and Chemical Science, 12(1), 24-42.

Ehiagbonare, J. E. & Onyibe, H. I. (2008). Studies on raising and preparation of planting stock of three indigenous forest timber species in Nigeria. International Journal of Biological and Chemical Sciences, 2(4), 573-578.

Enujiugha, V. N. & Agbede, J. O. (2000). Nutritional and anti-nutritional characteristics of African oil bean (Pentaclethra macrophylla Benth) seeds. Applied Tropical Agriculture, 5, 11-14.

Enujiugha, V. N. & Akanbi, C. T. (2005). Compositional changes of African oil bean (Pentaclethra macrophylla Benth) seeds during thermal processing. Pakistan Journal of Nutrition, 4 (1), 27-31.

Enujiugha, V. N. (2003). Nutrient changes during the fermentation of African oil bean (Pentaclethra macophylla Benth) seeds. Pakistan Journal of Nutrition, 2 (5), 320-323.

lith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., ScachettiPereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S. & Zimmermann, N. E. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129-151.

Elith, J., Philips, S.J., Hastie, T., Dudik, M., En Chee, Y. and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distribution, 17, 43-57.

Emebiri, L. C., Nwufo, M. I. & Obiefuna, J. C. (2012). Pentaclethra macrophylla: Population characteristics, distribution and conservation status in Nigeria. International Tree Crops Journal, 8(2-3), 69-82.

Fatemi, S. S., Rahimi, M., Tarkesh, M. & Ravanbakhsh, H. (2018). Predicting the impacts of climate change on the distribution of Juniperus excelsa M. Bieb. in the central and eastern Alborz Mountains, Iran. iForest, 11, 643-650.

Ferguson, H. M. (1959). The Role of Water in plant growth. In: Musser HB. (ed) Turf Management. USGA, 40 East 38th Street, New York 16, N. Y.

Ganglo, J. C., Djotan, G. K., Gbetoho, J.A., Kakpo, S. B., Aoudji, A. K. N., Koura, K. & YehouenouTessi, D.R. (2017). Ecological niche modelling and strategies for the conservation of Dialium guineense Willd. (Black velvet) in West Africa. International Journal of Biodiversity Conservation, 9(12), 373-388.

Gbetoho, A. J., Aoudji, A. K. N., Roxburgh, L. & Ganglo, J. C. (2017). Assessing the suitability of pioneer species for secondary forest restoration in Benin in the context of global climate change. Bois et Forets des Tropiques, 332(2), 43-55.

Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Townsend, P. A., Loiselle, B. A. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45, 239-247.

Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.

Haferkamp, M. R. (1987). Environmental factors affecting plant productivity. In: White RS, Short RE (Eds) Achieving efficient use of rangeland resources. Montana Agricultural Experiment Station.

Hatfield, J. L. & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extermes, 10, 4-10.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Hutchinson, G. E. (1957). Concluding remarks. Cold Harbour Symposia on Quantitative Biology, 22(2), 415-427.

ICRAF (2004).Pentaclethra macrophylla,http://www.worldagroforestrycentre.org/Sites

/TreeDBS/Aft/speciesinfo.cfm.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC (2014). Climate Change 2014: Impacts, Adaptation and Vulnerability. Summaries, Frequently Asked Questions and Cross Chapter Boxes. A contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., White, L. L. (eds.) World Meteorological Organization, Geneva, Switzerland.

Kakpo, S. B., Aoudji, A. K. N., Gnanguenon Guesse, D., Gbetoho, A. J., Koura, K., Djotan, G. K. & Ganglo, J. C. (2019). Spatial distribution and impacts of climate change on Milicia excelsa in Benin, West Africa. Journal of Forestry Research, https//doi.org/10.1007/s11676-019-01069-7.

Khanum, R., Mumtaz, A. S. & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using MaxEnt modelling. Acta Oecologica, 49, 23-31.

Koné, I., Lambert, J. E., Refisch, J. & Bakayoko, A. (2008). Primate seed dispersal and its potential role in maintaining useful tree species in the Taï region, Côte-d’Ivoire: implications for the conservation of forest fragments. Tropical Conservation Science, 1(3), 293-306.

Mandeng, N. M. O. (2009). Evaluation des potentialités de domestication de l’ebaye (Pentaclethra macrophylla Benth.) Par les pygméesbaka de l’arrondissement de Djoum, région du Sud Cameroun.Université de Dschang, Cameroun (p.82). Niveau 5.

Merow, C., Matthew, J. S. & John, A. S. Jnr. (2013). A practical guide to MaxEnt for modelling species distributions: what it does, and why inputs and settings matter. Ecogeography, 36(10), 1058-1069.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756.

Nabout, J. C., Caetano, J. M., Ferreira, R. B., Teixeira, I. R. & de Freitas Alves, S. M. (2012). Using correlative, mechanistic and hybrid niche models to predict the productivity and impact of global climate change. Brazilian Journal of Nature Conservation, 10(2), 1-7.

NFT Highlights (1995). Pentaclethra macrophylla: a multipurpose tree from Africa with potential for agroforestry in the tropics. NFTA 95-05, September.www.winrock.org/forestry/f

actpub/pentamac.htm

O’Donnell, M. S. & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States: U. S. Geological Survey Data Series 691.

Okafor, J. C. & Fernandez, E. C. (1987).Compound farms of south east Nigeria.A predominant agroforestry home garden system with crops and small livestock. Agroforestry Systems, 5 (2), 153-168.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S. (2009). Agroforestry Database: a tree reference and selection guide version 4.0. www.worldforestry.org/sites/treed bs/treedatabases.asp. (Pentaclethra macrophylla Benth.)

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akcakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., Willis, S. G., Young, B. & Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215-225.

Pearson, G. R., Raxworthy, J. C., Nakamura, M. & Peterson, A. T. (2007). Predicting species distribution from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.

Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimatic envelop models useful? Global Ecology and Biogeography, 12, 361-371.

Peterson, A. T., Papes, M. & Soberon, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 2131: 63-72.

Peterson, A. T., Soberon, J., Pearson, R. G., Anderson, R.P., Nolcamua, M., Martinez-Meyer, E. & Arajuo, M. B. (2011). Ecological niches and geographical distributions. Princeton University Press, Princeton, New Jersey, USA.

Phillips, S. J. & Dudik, M. (2008). Modelling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.

Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231-259.

Platts, P. J., Omeny, P. A. & Marchant, R. (2015). AFRICLIM: high-resolution climate projections for ecological applications in Africa. African Journal of Ecology, 53, 103-108.

Sarangzai, A. M., Ahmed, M., Ahmed, A., Tareen, L. & Jan, S. U. (2012). The ecology and dynamics of Juniperus excelsa forest in Balochistan-Pakistan. Pakistan Journal of Botany, 44(5), 1617-1625.

Soberon, J. & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics, 2, 1-10.

Stalin, N. & Swamy, P. S. (2015). Prodiction of suitable habitats for Syzygium caryophyllatum, an endangered medicinal tree by using species distribution modelling for conservation planning. European Journal of Experimental Biology, 5(11): 12-19.

Svenning, J. C. & Skov, F. (2006). Potential impact of climate change on the northern nemoral forest herb flora of Europe. Biodiversity and Conservation, 15, 3341-3356.

van Vuuren, D. P., Carter, T. R. (2014). Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Climate Change, 122, 415-429.

van Vuuren, P.D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.

Vayreda, J., Gracia, M., Martinez-Vilalta, J. & Retana, J. (2013). Patterns and drivers of regeneration of tree species in forests of peninsular Spain. Journal of Biogeography, 40: 1252-1265.

Warren, R., Van Der Wal, J., Price, J., Welbergen, J. A., Atkinson, I., Ramirez-Villegas, J., Osborn, T. J., Jarvis, A., Shoo, L. P., Williams, S. E. & Lowe, J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3(7), 678-682.

Willis, K. J. & Whittaker, R. J. (2002). Species diversity – scale matters. Science, 295(5558), 1245-1248.

Yu-Jun, Y., Xi, C., Zhi-Feng, Y. & Shang-Hong, Z. (2016). MaxEnt modelling for predicting the potential distribution of endangered medicinal plant (H. ripana Lour.) in Yunnan, China. Ecological Engineering, 92, 260-269.

Downloads

Published

2024-09-26

How to Cite

Ishoro, A. P., Owojoku, O. D., Bashie, A. L., Nicholas, O. G., Ekeng Ita, O., Ani, N. N., Nneoma, A. M., & Alaba, U. O. (2024). Climate change and Pentaclethra macrophylla Benth: Forecasting alterations in native distributional range across West and Central Africa . Journal of Wildlife and Biodiversity, 8(4), 220–246. https://doi.org/10.5281/zenodo.13835195

Most read articles by the same author(s)