Characterization of oral microbiome from black rat (Rattus rattus) and assessment for pathogenicity

Authors

  • Mudasar Hussain Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Mohsin Masood Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Laiba Nawaz Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Naseem Akhtar Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Hamad Alam Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Mehwish Shaukat Department of Zoology, Lahore College for Women University, Lahore, Pakistan
  • Muhammad Shabaan Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Mujeeb Ullah Department of Zoology, Islamia College Peshawar, Pakistan
  • Atif Sadique Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Waqas Ali UVAS

DOI:

https://doi.org/10.5281/zenodo.12706246

Keywords:

NGS, Okara, Pathogens, zoonosis, Proteobacteria, Pseudomonas

Abstract

The present study, conducted from August to November 2022 in district Okara, Pakistan, focused on assessing the bacterial characterization in oral saliva swabs of black rats (Rattus rattus). DNA extraction was performed using the QIAamp DNA Microbiome kit, and the 16S rRNA gene was amplified using universal primers to amplify variable regions (V) V1 to V8 of 1380 bp. The identified bacterial phyla were as follows: Proteobacteria 98%, Firmicutes 1%, Actinobacteria 0.4%, and Bacteroidetes 0.05%. The bacterial classes included Gammaproteobacteria 95%, Alpha Enterobacterales 3%, and Bacilli 1%.  The relative abundance of different bacterial orders was Pseudomonadales 40%, Enterobacterales 30%, Xanthomonadales 25%, Sphingomonadales 3%, Lactobacillales 1%, Micrococcales 0.4%, and Bacteroidales 0.05%. The identified families followed the order of Pseudomonadaceae 40%, Enterobacteriaceae 30%, Xanthomonadaceae 25%, and Sphingomonadaceae 3%. The percentage distribution of Pseudomonas was 40%, Stenotrophomonas 25%, Sphingomonas 3%, Pantoea 2%, and Porphyromonas 0.05%. This knowledge enhances our understanding of bacterial infections in rodents, serving as crucial baseline data for bacterial species. The high prevalence of potentially pathogenic bacteria like Pseudomonas suggests a significant risk of zoonotic diseases that could affect both local wildlife and human populations. It is crucial that future studies should focus on identified bacterial communities in other rodent species and small mammals to compare their roles in disease ecology. This ongoing research could identify specific species that are particularly significant in zoonotic transmission, thereby guiding future studies and public health measures.

References

Abd El-Ghany, W. A., 2021. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet. World., 14(8): 2155.

Abusleme, L., Gorman, H., Dutzan, N., Greenwell-Wild, T., and Moutsopoulos, N. M., Establishment and stability of the murine oral microbiome. J. Dent. Res., 2020, 99(6): 721-729.

Arweiler, N.B., Auschill, T. M., Heumann, C, Hellwig, E., Al-Ahmad, A., Influence of probiotics on the salivary microflora oral streptococci and their integration into oral biofilm. Antibiotics., 2020, 13;9(11):803.

Bensch, H. M., Tolf, C., Waldenström, J., Lundin, D., Zöttl, M., Bacteroidetes to Firmicutes: captivity changes the gut microbiota composition and diversity in a social subterranean rodent. Animal Microbiome, 2023, 5(1): 1–11.

Camps-Bossacoma, M, Pérez-Cano, F. J., Franch, À., Castell, M., Gut microbiota in a rat oral sensitization model: effect of a cocoa-enriched diet. Oxid. Med. Cell. Longev., 2017, (7417505): 1-13.

Chandel, D. S., Perez-Munoz, M. E., Yu, F., Boissy, R., Satpathy, R., Misra, P. R., Sharma, N., Chaudhry, R., Parida, S., Peterson, D. A., Gewolb, I. H., Changes in the gut microbiota after early administration of oral synbiotics to young infants in India. J. Pediatr. Gastroenterol. Nutr., 2017, 65(2): 218.

Chao, A., Chiu, C. H., Nonparametric estimation and comparison of species richness. eLS., 2016, 1-11.

Chellappan, M., Rodents. Polyphagous Pests of Crops., 2021, 457-532.

Colston, T. J., Jackson, C. R., Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol., 2016, 25(16): 3776-3800.

DDMP, Okara., DISTRICT DISASTER MANAGEMENT PLAN., 2022, 1-92. https://pdma.punjab.gov.pk/system/files/DDMP%20Okara.pdf

De-Andrade, P. A., Giovani, P. A., Araujo, D. S., de Souza, A. J., Pedroni-Pereira, A., Kantovitz, K. R., Andreote, F. D., Castelo, P. M., Nociti-Jr, F. H., Shifts in the bacterial community of saliva give insights on the relationship between obesity and oral microbiota in adolescents. Arch. Microbiol., 2020, 202(5):1085-95.

De-Cock, M., Fonville, M., de Vries, A., Bossers, A., van den Bogert, B., Hakze‐van der Honing, R., Maas, M., Screen the unforeseen: Microbiome‐profiling for detection of zoonotic pathogens in wild rats. Transbound. Emerg. Dis., 2022,69(6): 3881-3895.

Diagne, C., Galan, M., Tamisier, L., d’Ambrosio, J., Dalecky, A., Bâ, K., Brouat, C., Ecological and sanitary impacts of bacterial communities associated to biological invasions in African commensal rodent communities. Sci. Rep., 2017, 7(1): 14995.

Fitzpatrick, C. R., Toor, I., Holmes, M. M., Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. Behav. Ecol. Sociobiol., 2022 , 76(8): 117.

García, G., Castillo, A. M., González, P., Armien, B., Mejia, L. C., A Survey of Zoonotic Bacteria in the Spleen of Six Species of Rodents in Panama. Preprints.org., 2024, 1-15.

Guevarra, R. B., Magez, S., Peeters, E., Chung, M. S., Kim, K. H., Radwanska, M., Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS One., 2021, 16(1): e0239792.

Hallmaier-Wacker, Lueert, S., Roos, C., Knauf, S., The impact of storage buffer DNA extraction method and polymerase on microbial analysis. Sci. Rep., 2018, 8: 6292.

Khalil, Zahid, R., InSAR coherence-based land cover classification of Okara, Pakistan. EJRS., 2018, 21:S23-8.

Kilian, M., Chapple, I. L., Hannig, M., Marsh, P. D., Meuric, V., Pedersen, A. M., Tonetti, M. S., Wade, W. G., Zaura, E., The oral microbiome–an update for oral healthcare professionals. Br. Dent. J., 2016, 221(10): 657-66.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glockner, F. O., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res., 2013, 41(1): 1.

Krishnan, K., Chen, T,. Paster, B. J., A practical guide to the oral microbiome and its relation to health and disease. Oral Dis., 2017, 23(3): 276-286.

Magurran, A. E., Measuring biological diversity. Curr. Biol., 2021, 31(19): R1174-R1177.

Marques, A. R., Lima, B. P., Teixeira, R. S., Albuquerque, Á. H., Lopes, E. S., Maciel, W. C., Alencar, T. R., Zoonotic bacteria research and analysis of antimicrobial resistance levels in parrot isolates from pet shops in the city of Fortaleza, Brazil. Pesqui. Vet. Bras., 2021,41(e06837): 1-6.

Mercier-Darty, M., Royer, G., Lamy, B., Charron, C., Lemenand, O., Gomart, C., Decousser, J. W., Comparative whole-genome phylogeny of animal, environmental, and human strains confirms the genogroup organization and diversity of the Stenotrophomonas maltophilia complex. Appl. Environ. Microbiol., 2020, 86(10): e02919-19.

Mohd-Taib, F. S., Sham, R. A. M., Hassan, H., Aqma, W. S., Identification of bacteria from oral and rectal swabs from different species of rodents in Kemasul Forest Reserve, Pahang. JWP., 2018, 33: 75-93.

Otto, G. M., Franklin, C. L., Clifford, C. B., Biology and diseases of rats. In Laboratory animal medicine. Academic Press., 2015, 151-207.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F. O., The SILVA ribosomal RNA gene database project improved data processing and web-based tools. Nucleic Acids Res., 2013, 41: 590-596.

Radaic, A., Kapila, Y. L., The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J., 2021, 19:1335-60.

Sampaio-Maia, B., Caldas, I. M., Pereira, M. L., Pérez-Mongiovi, D., Araujo, R., The oral microbiome in health and its implication in oral and systemic diseases. Adv. Appl. Microbiol., 2016, 97:171-210.

Schramm, S. T., DeCurtis, E., Wheelis, S. E., Jorgeson, I., Rodrigues, D. B., Palmer, K., Characterization of the Oral Bacteriome of the Healthy Lewis Rat. bioRxiv., 2023, (6), 1-32.

Sedghi, L., DiMassa, V., Harrington, A., Lynch, S.V., Kapila, Y. L., The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000., 2021, 87(1), 107-31.

Shah, T., Hou, Y., Jiang, J., Shah, Z., Wang, Y., Li, Q., Xia, X., Comparative analysis of the intestinal microbiome in Rattus norvegicus from different geographies. Front. Microbiol. 2023, 14(1283453), 1-10.

Shah, T., Wang, Y., Wang, Y., Li, Q., Zhou, J., Hou, Y., Xia, X., A comparative analysis of the stomach, gut, and lung microbiomes in Rattus norvegicus. Microorganisms. 2023, 11(9), 2359.

Shin, N. R., Whon, T. W., Bae, J. W., Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 2015, 33(9), 496-503.

Shriner, S. A., VanDalen, K. K., Mooers, N. L., Ellis, J. W., Sullivan, H. J., Root, J. J., Pelzel, A. M., Franklin, A. B., Low-pathogenic avian influenza viruses in wild house mice. PLoS One., 2012, 7(6):e39206.

Sturgeon, A., Pinder, S. L., Costa, M. C., Weese, J. S., Characterization of the oral microbiota of healthy cats using next-generation sequencing. Vet. J., 2014, 201(2):223-9.

Sun, H., Zhao, X., Zhou, Y., Wang, J., Ma, R., Ren, X., Wang, H., Zou, L., Characterization of oral microbiome and exploration of potential biomarkers in patients with pancreatic cancer. BioMed Res. Int., 2020, 1(4712498), 1-11.

Vasques-Monteiro, I. M. L., Silva-Veiga, F. M., Miranda, C. S., de Andrade Gonçalves, É. C. B., Daleprane, J. B., Souza-Mello, V., A rise in Proteobacteria is an indicator of gut-liver axis-mediated nonalcoholic fatty liver disease in high-fructose-fed adult mice. Nutr. Res., 2021, 91: 26-35.

Walther, B., Geduhn, A., Schenke, D., Jacob, J., Exposure of passerine birds to brodifacoum during management of Norway rats on farms. Sci. Total Environ., 2021, 762: 144160.

Downloads

Published

2024-07-10

How to Cite

Hussain, M., Masood, M., Nawaz, L., Akhtar, N., Alam, H., Shaukat, M., Shabaan, M., Ullah, M., Sadique, A., & Ali, W. (2024). Characterization of oral microbiome from black rat (Rattus rattus) and assessment for pathogenicity. Journal of Wildlife and Biodiversity, 8(3), 449–462. https://doi.org/10.5281/zenodo.12706246

Most read articles by the same author(s)