Faunistic diversity and distribution of Wolf spiders (lycosidae: araneae) in Western and Northern Mindanao, Philippines


  • Philip Noel O. Banaag Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology
  • Olga M. Nuñeza Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology
  • Aimee Lynn B. Dupo Institute of Biological Sciences, University of the Philippines Los Baňos, Laguna, Philippines
  • Myla R. Santiago-Bautista




Ecotones, Lycosid, Philippines, species richness, Wolf spiders


Despite being one of the most abundant spider families in the world, wolf/lycosid spiders are poorly studied in the Philippines. In this study, we determined the faunistic diversity and distribution of lycosid spiders from nine sampling sites in Western and Northern Mindanao. An opportunistic sampling method was used to collect samples. Non-parametric estimators and GIS mapping were utilized in this study to determine richness (genus level) and distribution. Results showed that the accumulation curves of the observed richness and non-parametric estimators did not reach an asymptotic value suggesting that the true richness of the sampling areas is much higher than the estimated values. Six genera were documented in which one genus is a new Mindanao record and another one is new to the Philippines. Distribution results showed that fewer specimens are found in forested areas and sampled specimens usually clumped in agroecosystems near water bodies. Generally, Shannon-Weiner values were found to be very low (H’= 0 to 1.29) but tend to exhibit higher values (H’= 1.23 to 1.29) in sites with field margins that are located near streams or forest patches. Results indicate the importance of riparian areas and ecotones for the diversity of wolf spiders.


Ahmed M., Anam J., Saikia M.K., Manthan S.V., Saikia P.K. 2014. New records spider species under the Wadicosa genus (Sub-order: Araneae; Family: Lycosidae) from the agricultural field of Sonitpur District, Assam, India. Journal on New Biological Reports 3(1): 60-65.

Barrion A.T. 2001. Spiders: natural biological control agents against insect pests in Philippine rice fields. Transactions of the National Academy of Science & Technology, Philippines (23): 121-130.

Barrion A.T., Litsinger J.A. 1981a. HippasaholmeraeThorell (Araneae: Lycosidae): a new predator of rice leafhoppers and planthoppers. International Rice Research Newsletter 6(4): 15.

Barrion A.T., Litsinger J.A. 1981b. The spider fauna of Philippine rice agroecosystems I. Dryland.The Philippine Entomologist 5: 139-166.

Barrion A.T., Litsinger J.A. 1995. Riceland Spiders of South and Southeast Asia.Entomology Division International Rice Research Institue. UK, Philippines, pp. 700

Bond J.E., Hedin M.C., Ramirez M.G., Opell B.D., 2001. Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichussimus. Molecular Ecology(10): 899–910.

Bos M.M., Tscharntke T., Leuschner C., Zeller M., Guhardja E., Bidin A.2007. Insect diversity responses to forest conversion and agroforestry management. Stability of Tropical Rainforest Margins 277-294.

Cardoso P., Scharff N., Gaspar C., Henriques S.S., Carvalho R., Castro P.H., Schmidt J.B., Silva L., Szüts T., de Castro A., Crespo L.C. 2008. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest.Insect Conservation and Diversity1:71–84.

Castanheira P., Pérez-González A., Baptista R., 2016. Spider diversity (Arachnida: Araneae) in Atlantic Forest areas at PedraBranca State Park, Rio de Janeiro, Brazil. Biodiversity Data Journal (4): 4e7055.

Coddington J.A., Griswold C.E., Da´vila D.S., Penaranda E., Larcher S.F.1991. Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems. In E. C. Dudley (ed.), The Unity of Evolutionary Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology. Dioscorides Press, Portland, Oregon, USA, pp. 44-60.

Coddington JA, Agnarsson I, Miller JA, Kuntner MZ, Hormiga G. 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology 78(3):573–584.

Colwell R. K., 1999. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide) http://viceroy.eeb.uconn.edu/estimates. 8.2. Downloaded December 18, 2018.

Colwell R.K. 2013. Estimates, Version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide). Downloaded December 18, 2018.

Crawford R.L., Sugg P.M., Edwards J.S. 1995. Spider arrival and primary establishment on terrain depopulated by a volcanic eruption at Mount St. Helens Washington.The American Midland Naturalist 133(1): 60–75.

Dacar M.R.B., Nuñeza O.M. 2016. Microhabitat of leaf-dwelling pholcid spiders (Araneae:Pholcidae) in Rajah Sikatuna Protected Landscape (RSPL), Bohol, Philippines. ELBA Bioflux 8(1):1-6.

Dhali D.C., Saha S., Raychaudhuri D. 2017. Litter and ground-dwelling spiders (Araneae: Arachnida) of reserve forests of Dooars, West Bengal. World Scientific News63(2017): 1-242.

Dondale CD. 1986. The subfamilies of wolf spiders (Araneae: Lycosidae). Actas X CongresoInternacional de Aracnologia. Jaca, Espana 1: 327–332.

Edwards J.S., Thornton W.B. 2001. Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod community of Motmot. Journal of Biogeography 28: 1379–1388.

Elias N., Nuñeza O.M. 2015. Microhabitat utilization of leaf-dwelling pholcids (Araneae: Pholcidae) in Mount Baya, Camp Abubacar, and DimapatoyWatershed in Mindanao, Philippines. Asian Journal of Biological and Life Sciences4(3):189-193.

Fernando ES. 1998. Forest formations and flora of the Philippines: Handout in FBS 21. (Unpublished).

Framenau V.W. 2006. The wolf spider genus VenatrixRoewer: new species, synonymies and generic transfers (Araneae, Lycosidae). Records of the Western Australian Museum 23: 145-166.

Framenau VW, Manderbach R, Baehr M. 2002. Riparian gravel banks of upland and lowland rivers in Victoria (south-east Australia): arthropod community structure and life history patterns along a longitudinal gradient. Australian Journal of Zoology50: 102–123.

Gallé R, Fehér B. 2006: Edge effect on spider assemblages. Tiscia 35: 37-40.

Garciano D., Nuňeza O.M., Barrion-Dupo A. 2014. Species richness of spiders in Mt. Matutum, South Cotabato, Philippines.Journal of Biodiversity and Environmental Sciences 4(6): 214-224.

Greenstone M.H. 1982. Ballooning frequency and habitat predictability in two wolf spider species (Lycosidae: Pardosa). Florida Entomologist. 65(1): 83–89.

Greenstone M.H., Morgan C.E., Hultsch A-L., Farrow R.A., Dowse J.E. 1987: Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. Journal of Arachnology (15): 163-170.

Griswold CE. 1993. Investigations into the phylogeny of the lycosid spiders and their kin (Arachnida: Araneae: Lycosoidea). Smithsonian Contributions to Zoology539: 1-39.

Hammer Ø., Harper D.A.T.,Ryan P.D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1-9.

Hodge S., Vink C.J. 2000: An evaluation of Lycosahilaris as a bioindicator of organophosphate insecticide contamination. New Zealand Plant Protection 53: 226-229.

Krebs C.J. 1989. Ecological Methodology.NY Harperand Row Publishers Inc.,New York, pp. 654

Kronestedt T. 2015. Species of Wadicosa (Araneae, Lycosidae): transfer of two species from Pardosa and description of three new species from Africa. European Journal of Taxonomy132(132): 1-19.

Kronk A.E., Riechert S.E. 1979. Parameters affecting habitat choice of a desert wolf spider, Lycosasantrita Chamberlin and Ivie. Journal of Arachnology (7): 155-166.

Liu Z.H., Qian W., Li J., Zhang Y., Liang S. 2009. Biochemical and pharmacological study of venom of the wolf spider Lycosa singoriensis. Journal of Venomous Animals and Toxins including Tropical Diseases 15(1): 79-92.

Maandig R., Nuñeza O.M., Dupo A.B. 2017. Species richness and microhabitats of spiders in caves of Agusan del Sur, Philippines.Uttar Pradesh Journal of Zoology 37(1, 2):10-21.

Manderbach R., Framenau V.W. 2001. Spider (Arachnida: Araneae) communities of riparian gravel banks in the northern parts of the European Alps. Bulletin - British Arachnological Society12(1): 1–9.

Mao C.X., Colwell R.K. 2005. Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology 86(5):1143–1153.

Marshall E.J.P., Moonen A.C. 2002. Field margins in northern Europe: Their functions and interactions with agriculture. Agriculture, Ecosystems and Environment 89(1):5-21.

McKay RJ. 1974. The wolf spiders of Australia (Araneae: Lycosidae): A coral shingle inhabiting species from Western Australia. Memoirs of the Queensland Museum 17:21–26.

Morse D.H. 2002. Orientation and movement of wolf spiders Pardosalapidicina (Araneae, Lycosidae) in the intertidal zone. Journal of Arachnology (30): 601–609.

Mukhtar M.K., Khan Y., Jabeen S., Tahir H.M., Qadir A., Ahmad K.R., Butt A., Arshad M. 2012. A preliminary checklist of the spider fauna of Sargodha (Punjab), Pakistan.Pakistan Journal of Zoology44(5): 1245-1254.

Murphy N.P., Framenau V.W., Donnellan S.C., Harvey M.S., Park Y-C, Austin A.D. 2006. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior. Molecular Phylogenetics and Evolution 38(3):583–602.

Patiño S.C., Dupo A.B., Nuñeza O.M. 2016.Rapid assessment of spider fauna in Marilog District, Davao City, Philippines. 8(1):95-109.

Platnick NI. 2005. The World Spider Catalog, Version 6.0. Available at:<http://research.amnh.org/entomology/spiders/catalog/INTRO1.html>.American Museum of Natural History.

Quiñones L., Dupo A., Nuñeza O.M. 2016. Salticidae species richness in Rajah Sikatuna Protected Landscape (RSPL), Bohol, Philippines.ELBA Bioflux. 8(1):18-26.

Responte M., Nuñeza O.M. 2016. Microhabitats of pholcid spiders Araneae:Pholcidae) in Marilog District and Mount Hamiguitan, Davao, Philippines.Journal of Biodiversity and Environmental Sciences8(5):36-44.

Richter C.J.J. 1970. Aerial dispersal in relation to habitat in eight wolf spiders (Pardosa, Araneae, Lycosidae).Oecologia5(3): 200–214.

Sørensen L.L., Coddington J.A., Scharff N. 2002. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an afromontane forest. Environmental Entomology 31(2):319–330.

Stirling G., Wilsey B. 2001.Empirical relationships between species richness, evenness, and proportional diversity.The American Naturalist 158(3): 286 299.

Tahir H.M., Khizar F., Naseem S., Yaqoob R., Samiullah K. 2016. Insecticide resistance in the ground spider, Pardosasumatrana (Thorell, 1890; Araneae: Lycosidae).Archives of Insect Biochemistry and Physiology93(1): 55-64.

Van Erp S., Booth L.R., Gooneratne R., O’Ralloran K. 2000: Organophosphate toxicity in wolf spiders (Lycosidae): An evaluation of sublethal responses. NewZealand Plant Protection (53): 447-447.

Vink C.J. 2002. Lycosidae (Arachnida: Araneae). Fauna New Zeal44: 1–94.

Vollrath F., Parker G.A. 1992. Sexual dimorphism and distorted sex ratios in spiders.Nature 360(6400): 156–159.

Walther B.A., Morand S. 1998. Comparative performance of species richness estimation methods.Parasitology 116(4):395–405.




How to Cite

Banaag, P. N. O., Nuñeza, O. M., Dupo, A. L. B., & Santiago-Bautista, M. R. (2020). Faunistic diversity and distribution of Wolf spiders (lycosidae: araneae) in Western and Northern Mindanao, Philippines. Journal of Wildlife and Biodiversity, 4(1), 40–54. https://doi.org/10.22120/jwb.2019.115621.1099