Molecular determination of Chlamydia trachomatis of infertile woman by 16SrRNA in Mosul City

Authors

  • Nadia Mohammed Ameen Abdullah Al-Imam Manager of Alimam Laboratory in MOSUL /Iraqi Ministry of Health, Iraq.
  • Sarab Daoud AL-Shamaa AL-Hadba University, Iraq

DOI:

https://doi.org/10.5281/zenodo.10429071

Keywords:

Chlamydiae trachomatis, 16srRNA, Sequencing

Abstract

Chlamydia trachomatis (CT) is the most common negative gram bacteria obligate intracellular pathogen that causes sexually transmitted diseases, including ocular trachoma worldwide. the objective was to diagnose genital CT infection among reproductive-age women attending Al-Batool Hospital in Mosul-Iraq. including Immuno-chromatographic test and quantitative Polymerase chain reaction (qPCR). A total of 125 females were included in this research, out of which 100 were infertile and 25 were fertile. Endo-cervical swabs were collected from all participants during the study period (July 2022 to September 2022). The immune chromatographic for chlamydia (ICT) and qPCR method was utilized to amplify and quantify chlamydial 16srRNA, known for its high specificity and sensitivity. qPCR is considered an ultrasensitive marker for the detection of CT. and was used to confirm the positive cases identified by ICT. Among the 125 women tested, a total of 12 cases (12%) were found to be positive for CT infection, all positive cases identified through immunographic test showed increased amplicon copy numbers with variable concentrations when analyzed by qPCR, providing strong evidence for the accuracy and reliability of molecular test. Out of the 100 infertile women, 12 were positive for CT infection, while none of the 25 fertile women tested positive. These findings suggest a potential association between CT infection and female infertility. The research demonstrated the utility of quantitative Polymerase chain reaction (qPCR) in diagnosing genital Chlamydia trachomatis infection among reproductive-age women.

References

Ahmed, S. T. (2012). Detection of Chlamydia trachomatis Usin polymerase chain reaction (PCR). Al-Mustansiriyah Journal of Science, 23(6).

Fadrosh, D. W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R. M., & Ravel, J. (2014). An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome, 2(1), 1–7.

Fang, B., Li, Q., Wan, Z., OuYang, Z., & Zhang, Q. (2022). Exploring the association between cervical microbiota and HR-HPV infection based on 16S rRNA gene and metagenomic sequencing. Frontiers in Cellular and Infection Microbiology, 12, 922554.

Fatholahzadeh, B., Bahador, A., Hasanabad, M. H., Bazarjani, F., & Haghighi, F. (2012). Comparative screening of Chlamydia trachomatis infection in women population in Tehran, Iran. Iranian Red Crescent Medical Journal, 14(5), 289.

Feodorova, V. A., Saltykov, Y. V, Kolosova, A. A., Rubanik, L. V, Poleshchuk, N. N., & Motin, V. L. (2022). Emergence of novel Chlamydia trachomatis sequence types among Chlamydia patients in the Republic of Belarus. Microorganisms, 10(2), 478.

Fu, H., Gan, L., Tian, Z., Han, J., Du, B., Xue, G., Feng, Y., Zhao, H., Cui, J., & Yan, C. (2022). Rapid detection of Burkholderia cepacia complex carrying the 16S rRNA gene in clinical specimens by recombinase-aided amplification. Frontiers in Cellular and Infection Microbiology, 1326.

Gibney, S. M., & Drexhage, H. A. (2013). Evidence for a dysregulated immune system in the etiology of psychiatric disorders. Journal of Neuroimmune Pharmacology, 8(4), 900–920.

Grieshaber, N. A., Chiarelli, T. J., Appa, C. R., Neiswanger, G., Peretti, K., & Grieshaber, S. S. (2022). Translational gene expression control in Chlamydia trachomatis. Plos One, 17(1), e0257259.

Hasanabad, M. H., Mohammadzadeh, M., Bahador, A., Fazel, N., Rakhshani, H., & Majnooni, A. (2011). Prevalence of Chlamydia trachomatis and Mycoplasma genitalium in pregnant women of Sabzevar-Iran. Iranian Journal of Microbiology, 3(3), 123.

Liguori, A. P., Warrington, S. D., Ginther, J. L., Pearson, T., Bowers, J., Glass, M. B., Mayo, M., Wuthiekanun, V., Engelthaler, D., & Peacock, S. J. (2011). Diversity of 16S-23S rDNA internal transcribed spacer (ITS) reveals phylogenetic relationships in Burkholderia pseudomallei and its near-neighbors. PLoS One, 6(12), e29323.

Liguori, C., Chiaravalloti, A., Sancesario, G., Stefani, A., Sancesario, G. M., Mercuri, N. B., Schillaci, O., & Pierantozzi, M. (2016). Cerebrospinal fluid lactate levels and brain [18F] FDG PET hypometabolism within the default mode network in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 43, 2040–2049.

Mertz, C., Brat, P., Caris-Veyrat, C., & Gunata, Z. (2010). Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 119(2), 653–659.

Mohammed, I. H., Al-Awadei, S. J., & Saadedin, S. M. K. (2017). Molecular diagnosis of Chlamydia trachomatis in infertile Iraqi women using Real time-PCR and comparison with other methods. Iraqi Journal of Science, 1437–1446.

Möller, A., Ahrens, L., Surm, R., Westerveld, J., van der Wielen, F., Ebinghaus, R., & de Voogt, P. (2010). Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environmental Pollution, 158(10), 3243–3250.

Peng, L., Chen, J.-L., & Wang, D. (2020). Progress and perspectives in point of care testing for urogenital chlamydia trachomatis infection: A review. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26, e920873-1.

Petti, C. A., Polage, C. R., & Schreckenberger, P. (2005). The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. Journal of Clinical Microbiology, 43(12), 6123–6125.

Ranjan, K., Priya, H., Ramakrishnan, B., Prasanna, R., Venkatachalam, S., Thapa, S., Tiwari, R., Nain, L., Singh, R., & Shivay, Y. S. (2016). Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Applied Soil Ecology, 108, 195–203.

Rashidi, B. H., Tabriz, L. C., Haghollahi, F., Ramezanzadeh, F., Shariat, M., Foroushani, A. R., Daneshjoo, F., Akhondi, M. M., & Asgari, S. (2009). Prevalence of Chlamydia trachomatis infection in fertile and infertile women; a molecular and serological study. Journal of Reproduction & Infertility, 10(1).

Rethman, M. P., Carpenter, W., Cohen, E. E. W., Epstein, J., Evans, C. A., Flaitz, C. M., Graham, F. J., Hujoel, P. P., Kalmar, J. R., & Koch, W. M. (2010). Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas. The Journal of the American Dental Association, 141(5), 509–520.

Sachdeva, P., Patel, A. L., Sachdev, D., Ali, M., Mittal, A., & Saluja, D. (2009). Comparison of an in-house PCR assay, direct fluorescence assay and the Roche AMPLICOR Chlamydia trachomatis kit for detection of C. trachomatis. Journal of Medical Microbiology, 58(7), 867–873.

Sonmez, S., Sonmez, E., Yasar, L., Aydin, F., Coskun, A., & Sut, N. (2008). Can screening Chlamydia trachomatis by serological tests predict tubal damage in infertile patients? Microbiologica-Quarterly Journal of Microbiological Sciences, 31(1), 75–80.

Wilkowska-Trojniel, M., Zdrodowska-Stefanow, B., Ostaszewska-Puchalska, I., Redzko, S., Przepiesc, J., & Zdrodowski, M. (2009). The influence of Chlamydia trachomatis infection on spontaneous abortions. Advances in Medical Sciences, 54(1), 86.

Downloads

Published

2023-11-28

How to Cite

Abdullah Al-Imam, N. M. A. . ., & AL-Shamaa, S. D. . (2023). Molecular determination of Chlamydia trachomatis of infertile woman by 16SrRNA in Mosul City. Journal of Wildlife and Biodiversity, 7(Special Issue), 797–809. https://doi.org/10.5281/zenodo.10429071