Supplementation of White-tailed deer increases the size of the assemblages and the presence of predators in the area
DOI:
https://doi.org/10.5281/zenodo.8061018Keywords:
Odocoileus virginianus, OdocoilRelative abundance index, Supplementation, Camera trapsAbstract
The use of supplements to increase the body and antler size in Odocoileus virginianus (white-tailed deer) is rampant; however, the impact of this strategy on the size of surrounding species assemblages needs to be better understood. This work aimed to determine the effect of the multi-nutrient block (MNB) for white-tailed deer on the richness and abundance of birds and mammals and the presence of predators. We realized this work in Santa Cruz Nuevo, Puebla, Mexico, from 2017 to 2019. A completely randomized design with two treatments and eight replicates per treatment was used, for which 16 completely randomized sites were chosen, within which a camera trap was installed, and the animals' visits to the site were recorded. Plots of 50 m2 were established, and two MNBs (protein and minerals) were placed in the central part of eight squares. The other eight sites served as control treatments. The response variables were animal richness and relative abundance. The results showed that animal richness was higher in the MNBs sites (10.6 species; P < 0.05) and lower (7 species) in the control. The relative abundance of the sites with MNBs was higher for predators: coyote (Canis latrans), bobcat (Lynx rufus), puma (Puma concolor), and mammals less than 10 kg (rabbits, rodents and other omnivores). However, there were no significant differences in the relative abundance of white-tailed deer (P= 0.1568). In conclusion, the presence of the MNBs modifies the relative abundance of predators but does not increase the presence of white-tailed deer.
References
Alvarenga, G. C., Ramalho, E. E., Baccaro, F. B., da Rocha, D. G., Ferreira-Ferreira, J., & Bobrowiec, P. E. D. (2018). Spatial patterns of medium and large size mammal assemblages in várzea and terra firme forests, Central Amazonia, Brazil. PLOS ONE, 13(5), e0198120. https://doi.org/10.1371/journal.pone.0198120
Armenteros, J. A., Caro, J., Sánchez‐García, C., Arroyo, B., Pérez, J. A., Gaudioso, V. R., & Tizado, E. J. (2021). Do non‐target species visit feeders and water troughs targeting small game? A study from farmland Spain using camera‐trapping. Integrative Zoology, 16(2), 226-239. https://doi.org/10.1111/1749-4877.12496
Byerly, P. A., Lonsinger, R. C., Gese, E. M., Kozlowski, A. J., & Waits, L. P. (2018). Resource partitioning between kit foxes (Vulpes macrotis) and coyotes (Canis latrans): A comparison of historical and contemporary dietary overlap. Canadian Journal of Zoology, 96(5), 497-504. https://doi.org/10.1139/cjz-2017-0246
Bytheway, J. P., Carthey, A. J. R., & Banks, P. B. (2013). Risk vs. reward: How predators and prey respond to aging olfactory cues. Behavioral Ecology and Sociobiology, 67(5), 715-725. https://doi.org/10.1007/s00265-013-1494-9
Camacho Rico, F., Cantú Montemayor, B., Cruz Angón, A., Handal Silva, A., López Reyes, L., López, P. A., & Villareal Espino Barros, O. A. (2011). La biodiversidad en Puebla estudio de estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).
Carpio, A. J., Apollonio, M., & Acevedo, P. (2021). Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Review, 51(1), 95-108. https://doi.org/10.1111/mam.12221
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1
Chao, A., Henderson, P. A., Chiu, C., Moyes, F., Hu, K., Dornelas, M., & Magurran, A. E. (2021). Measuring temporal change in alpha diversity: A framework integrating taxonomic, phylogenetic and functional diversity and the INEXT.3D standardization. Methods in Ecology and Evolution, 12(10), 1926-1940. https://doi.org/10.1111/2041-210X.13682
Chao, A., & Just, L. (2012a). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547. https://doi.org/10.1890/11-1952.1
Chao, A., & Just, L. (2012b). Coverage-based rarefaction and extrapolation: Standarizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
Díaz-Pulido, A., & Payán Garrido, E. (2012). Manual de fototrampeo: Una herramienta de investigación para la conservación de la biodiversidad en Colombia (Primera edición). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt : Panthera Colombia.
Garshelis, D. L., Noyce, K. V., & St-Louis, V. (2020). Population reduction by hunting helps control human–wildlife conflicts for a species that is a conservation success story. PLOS ONE, 15(8), e0237274. https://doi.org/10.1371/journal.pone.0237274
INEGI. (2021). Aspectos geográficos, Puebla 2021. Instituto Nacional de Estadística y Geografia. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiUstva_KD3AhWTDkQIHeIzATsQFnoECAUQAQ&url=https%3A%2F%2Fwww.inegi.org.mx%2Fcontenidos%2Fapp%2Fareasgeograficas%2Fresumen%2Fresumen_21.pdf&usg=AOvVaw2I0Hrw2j2mhDiq5MUdkW3o
Jones, D. (2011). An appetite for connection: Why we need to understand the effect and value of feeding wild birds. Emu - Austral Ornithology, 111(2), i-vii. https://doi.org/10.1071/MUv111n2_ED
Jones, J. D., Kauffman, M. J., Monteith, K. L., Scurlock, B. M., Albeke, S. E., & Cross, P. C. (2014). Supplemental feeding alters migration of a temperate ungulate. Ecological Applications, 24(7), 1769-1779. https://doi.org/10.1890/13-2092.1
Le Borgne, H., Hébert, C., Dupuch, A., Bichet, O., Pinaud, D., & Fortin, D. (2018). Temporal dynamics in animal community assembly during post-logging succession in boreal forest. PLOS ONE, 13(9), e0204445. https://doi.org/10.1371/journal.pone.0204445
Mandujano, S., & Morteo-Montiel, O. (2018). Sugerencias para organizar, administrar y exportar datos de foto-trampeo con el programa WILD.ID. Revista Mexicana de Mastozoologia, 1(2), 31. https://doi.org/10.22201/ie.20074484e.2018.1.2.263
Moseley, W. A., Cooper, S. M., Hewitt, D. G., Fulbright, T. E., & Deyoung, C. A. (2011). Effects of supplemental feeding and density of white‐tailed deer on rodents. The Journal of Wildlife Management, 75(3), 675-681. https://doi.org/10.1002/jwmg.71
Murray, M. H., Becker, D. J., Hall, R. J., & Hernandez, S. M. (2016). Wildlife health and supplemental feeding: A review and management recommendations. Biological Conservation, 204, 163-174. https://doi.org/10.1016/j.biocon.2016.10.034
Muthoka, C. M., Andren, H., Nyaga, J., Augustsson, E., & Kjellander, P. (2023). Effect of supplemental feeding on habitat and crop selection by wild boar in Sweden. Ethology Ecology & Evolution, 35(1), 106-124. https://doi.org/10.1080/03949370.2021.2024265
O’Brien, T. G. (2011). Abundance, Density and Relative Abundance: A Conceptual Framework. En A. F. O’Connell, J. D. Nichols, & K. U. Karanth (Eds.), Camera Traps in Animal Ecology (pp. 71-96). Springer Japan. https://doi.org/10.1007/978-4-431-99495-4_6
Price, C. J., & Banks, P. B. (2017). Food quality and conspicuousness shape improvements in olfactory discrimination by mice. Proceedings of the Royal Society B: Biological Sciences, 284(1847), 20162629. https://doi.org/10.1098/rspb.2016.2629
Ramirez, A., & Gutiérrez Fonseca, P. E. (2016). Sobre ensambles y ensamblajes ecológicos—Respuesta a Monge-Nájera. Revista de Biología Tropical, 64(2), 817. https://doi.org/10.15517/rbt.v64i2.21232
Rzedowski, J. (2006). Vegetación de México (1a ed.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Vegetación de México https://www.biodiversidad.gob.mx › librosDig › pdf
Schaefer, H. M., Spitzer, K., & Bairlein, F. (2008). Long- term effects of previous experience determine nutrient discrimination abilities in birds. Frontiers in Zoology, 5(1), 4. https://doi.org/10.1186/1742-9994-5-4
Shimadzu, H. (2018). On species richness and rarefaction: Size- and coverage-based techniques quantify different characteristics of richness change in biodiversity. Journal of Mathematical Biology, 77(5), 1363-1381. https://doi.org/10.1007/s00285-018-1255-5
Villarreal Espino-Barros, O. A., Viera, R. G., Franco, F. J., Hernández, J. E. H., & Castañón, S. R. (2008). Evaluación de las unidades de manejo para la conservación de la vida silvestre del venado cola blanca en la región Mixteca, México. 26.
Villarreal-Espino, O. A., Plata-Pérez, F. X., Camacho-Ronquillo, J. C., Hernández-Hernández, J. E., Franco-Guerra, F. J., Aguilar-Ortega, B., & Mendoza-Martínez, G. D. (2011). El Venado Cola Blanca en la mixteca poblana. Therya, 2(2), 103-110. https://doi.org/10.12933/therya-11-25
Villarreal-Espino-Barros, O. A., Plata-Pérez, F. X., Mendoza-Martínez, G. D., Martínez-García, J. A., Hernández-García, P. A., & Arcos-García, J. L. (2012). Distancia radial al agua, cobertura de escape e indicios de coyote (canis latrans), asociados a la presencia del venado cola blanca (Odocoileus virginianus). Revista Chapingo Serie Ciencias Forestales y Del Ambiente, XVIII(2), 231-239. https://doi.org/10.5154/r.rchscfa.2011.01.012
Zhou, C., Wang, G., Yu, H., Geng, Y., Wu, W., Tu, H., Price, M., Fan, Z., Meng, Y., & Yue, B. (2019). Genome-wide analysis reveals the genomic features of the turkey vulture (Cathartes aura) as a scavenger. Molecular Genetics and Genomics, 294(3), 679-692. https://doi.org/10.1007/s00438-019-01541-3
Zou, Y., Zhao, P., & Axmacher, J. C. (2023). Estimating total species richness: Fitting rarefaction by asymptotic approximation. Ecosphere, 14(1). https://doi.org/10.1002/ecs2.4363
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.