Characterization of a translocated Mitochondrial Cytochrome b pseudogene in Meriones persicus (Rodentia; Gerbillinae); a potential taxonomic pitfall

Authors

  • Ahmad Mahmoudi Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Pasteur Str., Tehran 1316943551, Iran; and Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
  • Ehsan Mostafavi Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
  • Boris Kryštufek Slovenian Museum of Natural History, Ljubljana, Slovenia

DOI:

https://doi.org/10.5281/zenodo.8151941

Keywords:

Species identification, Mitochondrial Cytochrome b, Jirds, Pseudogenes

Abstract

Due to its faster evolution rate compared to nuclear genes, haploid mitochondrial DNA (mtDNA) is a promising species identification tool. This has led to its significant use in taxonomic and phylogenetic studies. While mtDNA is subject to selective constraints that prevent the accumulation of deleterious mutations, the prevalence of nuclear-mitochondrial fragments (known as NUMTs or pseudogenes) in mammals has complicated the use of mtDNA for taxonomy. In the present study, a pseudogene of the mitochondrial cytochrome b (Cytb) was detected in Meriones persicus. This pseudogene differed from its mitochondrial counterpart at 235 out of 1140 sites, and is characterized by frame-shift mutations, indels, and accumulation of non-synonymous substitutions. It is the first report of the Cytb pseudogene in a jird, highlighting the risk of misidentifying NUMTs as authentic mtDNA and the importance of addressing this potential pitfall in taxonomic studies.

References

Brown, W. M., George, Jr-M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, 76(4), 1967–1971. https://doi.org/10.1073/pnas.76.4.1967.

Buckle, A.P & Smith, R.H. (1994). Rodent Pests and Their Control. Cambridge University Press, Cambridge, United Kingdom.

Chevret, P., & Dobigny, G. (2005). Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Molecular phylogenetics and evolution, 35(3), 674–688. https://doi.org/10.1016/j.ympev.2005.01.001.

Dainat, J., & Pontarotti, P. (2021). Methods to identify and study the evolution of pseudogenes using a phylogenetic approach. In Pseudogenes: Functions and Protocols (pp. 21-34). New York, NY: Springer US.

Darvish, J. (2011). Morphological comparison of fourteen species of the genus Meriones Illiger, 1811 (Rodentia: Gerbillinae) from Asia and North Africa. Iranian Journal of Animal Biosystematics, 7(1).

Denys, C., Taylor, P., Burgin, C., Aplin, K., Fabre, P., Haslauer, R., et al. (2017). Species Account of Muridae. In: Wilson, D.E., Lacher, Jr, T. E., Mittermeier, R.A. (Eds) Handbook of Mammals of the World, Vol. 7, Rodents II, 599-884. Lynx Edicions. Barcelona. 1008 pp.

DeSalle, R., Schierwater, B., & Hadrys, H. (2017). MtDNA: The small workhorse of evolutionary studies. Frontiers in Bioscience-Landmark, 22(5), 873–887.

DeWoody, J. A., Chesser, R. K., & Baker, R. J. (1999). A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). Journal of Molecular Evolution, 48, 380–382. https://doi.org/10.1007/PL00013154.

Dianat, M., Darvish, J., Cornette, R., Aliabadian, M., & Nicolas, V. (2017). Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. Journal of Zoological Systematics and Evolutionary Research, 55(1), 29–45. https://doi.org/10.1111/jzs.12145.

Ding, L., Luo, G., Zhou, Q., Sun, Y., & Liao, J. (2022). Comparative mitogenome analysis of gerbils and the mitogenome phylogeny of Gerbillinae (Rodentia: Muridae). Biochemical Genetics, 60(6), 2226–2249. https://doi.org/10.1007/s10528-022-10213-8.

Dubey, S., Michaux, J., Brünner, H., Hutterer, R., & Vogel, P. (2009). False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Molecular Phylogenetics and Evolution, 50(3), 633–641. https://doi.org/10.1016/j.ympev.2008.12.008.

Jaarola, M., & Searle, J.B., (2004). A highly divergent mitochondrial DNA lineage of

Microtus agrestis in southern Europe. Heredity, 92, 228–234. https://doi.org/10.1038/sj.hdy.6800400.

Kryštufek, B., & Vohralík, V. (2009). Mammals of Turkey and Cyprus. Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae. University of Primorska, Science and research centre Koper, Koper.

Kumar, S., Stecher, G, & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054.

Li W-H, Gojobori T, & Nei, M. (1981) Pseudogenes as a paradigm of neutral evolution. Nature, 292, 237–239. https://doi.org/10.1038/292237a0.

Lynch, M. (1997). Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. Molecular Biology and Evolution, 14(9), 914–925. https://doi.org/10.1093/oxfordjournals.molbev.a025834.

Mahmoudi, A., Kryštufek, B., Sludsky, A., Schmid, B. V., De Almeida, A. M., Lei, X., ... & Mostafavi, E. (2021). Plague reservoir species throughout the world. Integrative Zoology, 16(6), 820–833. https://doi.org/10.1111/1749-4877.12511.

Montgelard, C., Bentz, S., Tirard, C., Verneau, O., & Catzeflis, F. M. (2002). Molecular systematics of Sciurognathi (Rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22(2), 220–233.

Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., & Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300.

Osawa, S., Ohama, T., Jukes, T. H., & Watanabe, K. (1989). Evolution of the mitochondrial genetic code I. Origin of AGR serine and stop codons in metazoan mitochondria. Journal of Molecular Evolution, 29, 202–207. https://doi.org/10.1007/BF02100203.

Plourde, B. T., Burgess, T. L., Eskew, E. A., Roth, T. M., Stephenson, N., & Foley, J. E. (2017). Are disease reservoirs special? Taxonomic and life history characteristics. PloS one, 12(7), e0180716. https://doi.org/10.1371/journal.pone.0180716.

Rabiee, M. H., Mahmoudi, A., Siahsarvie, R., Kryštufek, B., & Mostafavi, E. (2018). Rodent-borne diseases and their public health importance in Iran. PLoS neglected tropical diseases, 12(4), e0006256. https://doi.org/10.1371/journal.pntd.0006256.

Robin, N. B. ., Geofrey , A. ., Levuson , C. G. ., Shah, K. K. ., Subedi, A. ., Tiwari , I. ., Shrestha , J. ., & Wagle , N. . (2021). Use of Cassava Peels and Scarecrows to Control Rodent Damage in ‎Groundnut Fields. Scientific Reports in Life Sciences, 2(2), 1–11. https://doi.org/10.22034/srls.2021.528142.1017

Shtolz, N., & Mishmar, D. (2019). The mitochondrial genome–on selective constraints and signatures at the organism, cell, and single mitochondrion levels. Frontiers in Ecology and Evolution, 7, 342. https://doi.org/10.3389/fevo.2019.00342.

Triant, D. A., & DeWoody, J. A. (2007). The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography. Journal of Mammalogy, 88(4), 908–920. https://doi.org/10.1644/06-MAMM-A-204R1.1.

Triant, D. A., & DeWoody, J. A. (2008). Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica, 132, 21–33. https://doi.org/10.1007/s10709-007-9145-6.

Wei, W., Schon, K. R., Elgar, G., Orioli, A., Tanguy, M., Giess, A., ... & Chinnery, P. F. (2022). Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature, 611(7934), 105–114. https://doi.org/10.1038/s41586-022-05288-7.

Wilson, D. E., Lacher, T.E., & Mittermeier, R.A. (Eds.). (2017). Handbook of the Mammals of the World: Rodents II. Lynx Edicions, Barcelona.

Zhang, D. X., & Hewitt, G. M. (2003). Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12(3), 563–584. https://doi.org/10.1046/j.1365-294X.2003.01773.x.

Zhang, D.X., & Hewitt, G.M. (1996). Nuclear integrations: challenges for mitochondrial

DNA markers. Trends in Ecology and Evolution, 11, 247–251. https://doi.org/10.1016/0169-5347(96)10031-8.

Zhang, Z., Carriero, N., & Gerstein, M. (2004). Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20, 62–67. https://doi.org/10.1016/j.tig.2003.12.005.

Downloads

Published

2023-07-16

How to Cite

Mahmoudi, A., Mostafavi, E., & Kryštufek, B. (2023). Characterization of a translocated Mitochondrial Cytochrome b pseudogene in Meriones persicus (Rodentia; Gerbillinae); a potential taxonomic pitfall. Journal of Wildlife and Biodiversity, 8(1), 203–212. https://doi.org/10.5281/zenodo.8151941