Forthcoming

Predicted current and future distribution of the fire salamander, Salamandra infraimmaculata in Turkey

Authors

  • Muammer Kurnaz Gümüşhane University, Kelkit Vocational School of Health Services, Department of Medical Services and Techniques 29600, Kelkit / Gümüşhane, Turkey

Keywords:

Climatic change, Ecological niche modeling, Maximum Entropy, Species distribution, Salamandridae, Anatolia

Abstract

Although the fire salamander, Salamandra infraimmaculata, is relatively distributed in a broad area in the Middle East, it lives in a narrow area in the southeast and south Anatolia in Turkey. The habitats of the species have been downgraded day by day, and its IUCN category is listed as "NT, and the population trend is decreasing. Within the scope of this study, a model was created with the existing locality records of the species using ecological niche modeling. As a result of this model, the current and future distribution of the species were compared. The results obtained from the analyzes made within the scope of this study showed that the current probable distribution of the species coincides with the existing locality records. However, for possible climate change scenarios, the possible future distribution of the species will be thought to be negatively affected by the increase in the greenhouse gas effect, the change in the amount of carbon dioxide, and the increase of many harmful gas concentrations in the atmosphere.  If all four climate scenarios proposed in this study in the future occur sequentially, the species will have to limit or change its range, and even become will be extinct in some areas. Species conservation action plans should be initiated, and local governments should take necessary measures to prevent this from happening.

References

Ahsani N., Kaboli M., Rastegar-Pouyani E., Karami M., Kamangar B.B. 2018. Habitat suitability prediction for Salamandra infraimmaculata (Caudata: Amphibia) in western Iran based on species distribution modeling. Journal of Asian Pacific Biodiversity 11: 203-205.

Akman B., Yildiz M.Z., Özcan A.F., Bozkurt, M.A., İğci N., Göçmen B. 2018. The Herpetofauna of the East Anatolian Province of Bitlis (Turkey). Herpetozoa 31: 69-82.

Araújo M.B., Thuiller W., Pearson R.G. 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712-1728.

Ashraf U., Peterson A.T., Chaudhry M.N. Ashraf I., Saqib Z., Ahmad S.R., Ali H. 2017. Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere 8 (5): e01825.

Baran İ., Avci A., Kumlutaş Y., Olgun K., Ilgaz Ç. 2021. Türkiye Amfibi ve Sürüngenleri [The Amphibians and Reptiles of Turkey]. Palme Publishing, Ankara 230 pp.

Behroozian M., Ejtehadi H., Peterson A.T., Memariani F., Mesdaghi M. 2020. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PloS One 15 (8): e0237527.

Benton T.G., Vickery J.A., Wilson J. D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution 18: 182-188.

Blank L., Sinai I., Bar-David S., Peleg N., Segev O., Sadeh A., Kopelman N.M., Templeton A.R., Merilä J., Blaustein L. 2013. Genetic population structure of the endangered fire salamander (Salamandra infraimmaculata) at the southernmost extreme of its distribution. Animal Conservation 16: 412-421.

Cahill A.E., Aiello-Lammens M.E., Fisher-Reid M.C., Hua X., Karanewsky C.J., Ryu H.Y., Sbeglia G.C., Spagnolo F., Waldron J.B., Warsi O., Wiens J.J. (2013). How does climate change cause extinction? Proceedings of the Zoological Society 280: 2012890.

Çiçek K., Koyun M., Tok C.V. 2017. Food composition of the Near Eastern Fire Salamander, Salamandra infraimmaculata Martens, 1885 (Amphibia: Urodela: Salamandridae) from Eastern Anatolia. Zoology in the Middle East 63: 130-135.

Çoşkun Y., Kaya A., Kaya C. 2013. New records of Salamandra infraimmaculata (Mertens, 1948) and Neurergus strauchii (Steindachner, 1887) (Caudata: Salamandridae) from Southeast Anatolia. Anadolu Doğa Bilimleri Dergisi 4: 1-5. [in Turkish].

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton Y.M.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti‐Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.

Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E., Yates C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distribution 17: 43-57.

Fujino J., Nair R., Kainuma M., Masui T., Matsuoka Y. 2006. Multigas mitigation analysis on stabilization scenarios using aim global model. Energy Journal 3: 343–354

Gallien L., Douzet R., Pratte S., Zimmermann N E., Thuiller W. 2012. Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography 21: 1126-1136.

Gül S., Kumlutaş Y., Ilgaz Ç. 2018. Potential distribution under different climatic scenarios of climate change of the vulnerable Caucasian salamander (Mertensiella caucasica): A case study of the Caucasus Hotspot. Biologia 73: 175-184.

Harris R.M.B., Grose M.R., Lee G., Bindoff N.L., Porfirio L.L., Fox-Hughes P. 2014. Climate projections for ecologists. WIRES Climate Change 5: 621–637.

Hijioka Y., Matsuoka Y., Nishimoto H., Masui T., Kainuma M. 2008. Global GHG emission scenarios under GHG concentration stabilization targets. Journal of Global Environment and Engineering 13: 97–108.

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.

Hoseinian-Yousefkhani S.S., Tehrani S.J., Moodi B., Gül S. 2016. Distribution patterns and habitat suitability for three species of the genus Hyla Laurenti, 1768 in the Western Palearctic. Turkish Journal of Zoology 40: 257-261.

Hurvich C.M., Tsai C.L. 1989. Regression and time series model selection in small samples. Biometrika 76 (2): 297-307.

Karahisar S., Demirsoy A. 2012. The Comparison of Important Salamandra infraimmaculata Populations in Turkey by Means of Morphological, Histological, and Karyotypical Characteristics. Hacettepe Journal of Biology 40: 343-352.

Khwarahm N.R., Ararat K., Qader S., Sabir D. K. 2021. Modeling the distribution of the Near Eastern fire salamander (Salamandra infraimmaculata) and Kurdistan newt (Neurergus derjugini) under current and future climate conditions in Iraq. Ecological Informatics 63: 101309.

Krockenberger A.K., Edwaards W., Kanowski J. 2012. The limit to the distribution of a rainforest marsupial folivoreis consistent with the thermal intolerance hypothesis. Oecologia 168: 889–899.

Kurnaz M. 2020. Amfibian and reptile species list of Turkiey. Journal of Animal Diversity 2 (4): 10-32.

Kurnaz M., Şahin M.K. 2021. A contribution to the biogeography and taxonomy of two Anatolian Mountain brook newts, Neurergus barani and N. strauchii (Amphibia: Salamandridae) using ecological niche modeling. Turkish Journal of Zoology 45: 54-64.

Manel S., Williams H.C., Ormerod S.J. 2002. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38 (5): 921-931.

Noroozi J., Akhani H., Breckle S.W. 2008. Biodiversity and phytogeography of the alpine flora of Iran. Biodiversity Conservation 17: 493-521.

Olgun K., Avci A., Bozkurt E., Üzüm N., Tural M., Olgun M.F. 2015. Range extensions of two salamanders [Neurergus strauchii (Steindachner, 1887) and Salamandra infraimmaculata Martens, 1885] (Caudata: Salamandridae) from Anatolia, Turkey. Russian Journal of Herpetology 22: 289-296.

Öz M. 1986. Anadolu’daki Salamandra salamandra’nın taksonomi, biyoloji ve dağılışı üzerine araştırmalar. — PhD Thesis, Ege University, Faculty of Science, İzmir.

Papenfuss T., Disi A., Rastegar-Pouyani N., Degani G., Ugurtas I., Sparreboom M., Kuzmin S., Anderson S., Sadek R., Hraoui-Bloquet S., Gasith A., Elron E., Gafny S., Kiliç T., Gem E., Kaya U. (2009). Salamandra infraimmaculata. — The IUCN Red List of Threatened Species 2009: e.T59466A11927871. Available at: https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T59466A11927871.en. Downloaded on 19 January 2021.

Pearson R.G., Dawson T.P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12:361-371.

Perktaş U., Peterson A.T., Dyer D. 2017. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. Journal of Ornithology 158 (1):1-13.

Phillips S.J., Anderson R P., Dudík M., Schapire R.E., Blair M.E. 2017. Opening the black box: An open‐source release of Maxent. Ecography 40 (7):887-893.

Pounds J.A., Bustamante M.R., Coloma L.A., Consuegra J.A., Fogden M.P.L., Foster P.N., Marca E.L., Masters K.L., Merino-Viteri A., Puschendorf R., Ron S.R., Sánchez-Azofeifa G.A., Still C.J., Young B.E. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161.

Qiao H., Peterson A.T., Campbell L.P., Soberón J., Ji L., Escobar L.E. 2016. NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39 (8): 805-813.

Raes N., Ter Steege H. 2007. A null model for significance testing of presence-only species distribution models. Ecography 30: 727-736.

Riahi K., Rao S., Krey V., Cho C., Chirkov V., Fischer G., Kindermann G., Nakicenovic N., Rafaj P. 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climate Change 109: 33–57.

Sarikaya B., Yildiz M.Z., Sezen G. 2017. The Herpetofauna of Adana Province (Turkey). Commagene Journal of Biology 1 (1):1-11.

Sinai I., Segev O., Weil G., Oron T., Merilä J., Templeton A.R., Blaustein L., Greenbaum G., Blank L. 2019. The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conservation Genetics 20 (4): 875-889.

Steinfartz S., Veith M., Tautz D. 2000. Mitochondrial sequence analyses of Salamandra taxa suggest old split of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology 9: 397–410.

Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M., Jeltsch F. 2004. Animal species diversity is driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31:79-92.

Thomson A.M., Calvin K.V., Smith S.J., Kyle G.P., Volke A., Patel P., Delgado-Arias S., Bond-Lamberty B., Wise M.A., Clarke L.E., Edmonds J.A. 2011. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climate Change 109: 77–94.

Uğurtaş İ.H., Yildirimhan H.S., Öz M. 2000. Herpetofauna of the Eastern Region of the Amanos Mountains (Nur). Turkish Journal of Zoology 24: 257-261.

Warren D.L., Glor R.E., Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607-611.

Van Vuuren D.P., Den Elzen M.G.J., Lucas P.L., Eickhout B., Strengers B.J., Van Ruijven B., Wonink S., Van Houdt R. 2007. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climate Change 81: 119–159.

Yildiz M.Z., Sarikaya B., Bozkurt M.A. 2019. Hatay İlinin Herpetofaunası (Doğu Akdeniz Bölgesi, Türkiye). Biodiversity and Conservation 12 (2): 197-205.

Downloads

Published

2022-03-14

How to Cite

Kurnaz, M. . (2022). Predicted current and future distribution of the fire salamander, Salamandra infraimmaculata in Turkey. Journal of Wildlife and Biodiversity, 6(X). Retrieved from https://wildlife-biodiversity.com/index.php/jwb/article/view/182

Issue

Section

Original Article