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Abstract

Amphibians are critical bioindicators of environmental health, yet integrative frameworks
combining genomic, acoustic, and spatial data remain underutilized in regional biodiversity
assessments. Here, I present the first integrative and reproducible workflow for analyzing
phylogenetic, genomic, acoustic, and spatial data across 30 U.S. frog species, leveraging publicly
available mitochondrial COI sequences, genome size records, frog call recordings, and
georeferenced occurrence data. I reconstructed a robust maximum-likelihood phylogeny revealing
well-supported clade-level relationships among Hylidae, Ranidae, and Bufonidae. Genome size
data mapped onto the phylogeny reveal family-level trends, with Hylidae showing consistently
larger genomes. Acoustic features such as call duration and dominant frequency from five
representative species showed significant interspecific variation, with PCA clustering reflecting
taxonomic structure. Spatial analysis of >3,000 GBIF occurrence records identified biodiversity
hotspots in the Southeastern U.S., aligned with environmental gradients. All analyses were
conducted using open-source tools (MAFFT, FastTree, librosa, geopandas, scikit-bio) in a
reproducible pipeline shared via GitHub. This study provides a computationally transparent, multi-
modal framework for amphibian biodiversity research and conservation planning.

Keywords: Amphibian biodiversity, COI phylogenetics, genome size evolution, spatial
distribution modeling, open-source pipeline, GBIF

Introduction
Amphibians are critical bioindicators of environmental health, exhibiting sensitivity to habitat
degradation, climate change, pollution, and emerging infectious diseases (Blaustein et al., 1994;

Stuart et al., 2004). Globally, amphibian declines have highlighted the urgent need for systematic

biodiversity assessments to inform conservation priorities (Wake and Vredenburg, 2008; Grant et
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al., 2017). Frogs, as the most speciose amphibian group, contribute to ecosystem stability by
regulating insect populations and serving as prey for higher trophic levels (Duellman and Trueb,
1994; Wells, 2007). They also provide tractable systems for studying vertebrate development,
behavior, and evolutionary processes due to their diverse reproductive modes and ecological
strategies (Wells, 2007; Bonett and Blair, 2017). In the United States, frog species diversity spans
a wide range of ecological zones, including temperate forests, grasslands, wetlands, and arid
regions, reflecting a complex interplay of historical biogeography, ecological adaptation, and
climate variability (Petranka, 1998; Pyron and Wiens, 2011). Despite extensive ecological studies,
comprehensive phylogenetic and integrative trait-based analyses across US frog species remain
limited, creating gaps in our understanding of evolutionary processes shaping their diversity.
Molecular phylogenetics has revolutionized biodiversity assessments by providing robust
frameworks for species delimitation, cryptic species detection, and evolutionary inference (Hebert
et al., 2003; Vences et al., 2005). Among molecular markers, the mitochondrial cytochrome
oxidase I (COI) gene has been widely adopted for DNA barcoding and phylogenetic studies due
to its balance between conservation and variability, enabling effective resolution across taxonomic
scales (Smith et al., 2005; Vieites et al., 2009). COI barcoding has facilitated the identification of
cryptic diversity and biogeographic patterns in amphibians (Vences et al., 2005; Fouquet et al.,
2007), but a systematic integration of COI data to assess interspecific relationships across US frog
species within a unified phylogenetic framework has not been comprehensively performed.
Genome size variation, often measured as the haploid nuclear DNA content (C-value), influences
cellular and developmental processes, body size, and life history traits, and may reflect
evolutionary constraints and adaptations (Gregory, 2002; Sun and Mueller, 2014). Amphibians,
particularly anurans, exhibit some of the highest genome size variability among vertebrates, with
potential ecological and evolutionary implications (Liedtke et al., 2018; Jonsson and Jonsson,
2019). In frogs, genome size can impact developmental timing, metabolic rates, and ecological
tolerances (Santos, 2012; Leiva et al., 2019), yet the phylogenetic patterns of genome size variation
across US species remain underexplored. Investigating genome size within a phylogenetic context
can yield insights into the evolutionary dynamics shaping amphibian genome architecture and
potential trait conservatism across clades (Smith et al., 2018; Liedtke et al., 2018).

Bioacoustics is another critical but often underutilized dimension in amphibian biodiversity

studies. Frog calls are species-specific signals used in mate attraction and territorial behaviors,
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making them valuable for species identification, ecological monitoring, and understanding the
evolution of communication systems (Gerhardt and Huber, 2002; Wells, 2007). Acoustic signals
can reflect ecological adaptations, such as habitat type and temperature regimes, and may exhibit
phylogenetic signal, indicating evolutionary conservatism or divergence in call traits among
related species (Amezquita et al., 2009). Integrating acoustic trait data with phylogenetic analyses
allows testing hypotheses about the evolution of acoustic communication systems and the role of
sexual selection in diversification (Ryan and Rand, 1993; Wilkins et al., 2013).

Spatial data provide a crucial environmental dimension to biodiversity research by revealing
spatial patterns of species distributions and habitat preferences. Geographic occurrence records
can be used to investigate species range overlap, habitat specialization, and potential ecological
barriers that shape evolutionary trajectories (Pigot and Tobias, 2013). When integrated with
phylogenetic frameworks, spatial data support the identification of biogeographic clusters,
divergence zones, and regions of conservation concern (Wiens and Donoghue, 2004; Kozak and
Wiens, 2006). The Global Biodiversity Information Facility (GBIF) offers an open-access
repository of species occurrence records, enabling high-resolution mapping and spatial ecology
analyses at broad scales (Robertson et al., 2014). In amphibian studies, such occurrence-based
mapping enhances the understanding of environmental correlates of species richness, community
assembly, and distributional shifts under climate change (Lawler et al., 2009; Raxworthy et al.,
2007). Recent advances in computational tools and open-access data repositories have made it
feasible to integrate molecular, genomic, and acoustic datasets into scalable, reproducible
biodiversity pipelines (Rojas et al., 2016; Hogg, 2024). Such integrative approaches enable
comprehensive assessments of biodiversity patterns, trait evolution, and conservation
prioritization, particularly in the context of rapidly changing environments (Grant et al., 2017;
Smith et al., 2018). Despite these methodological advancements, systematic integrative analyses
that combine molecular phylogenetics, genome size variation, and bioacoustic trait data across US
frog species are lacking.

Here, 1 present a systematic, reproducible analysis of phylogenetic relationships, genome size
patterns, acoustic trait divergence, and spatial distribution across frog species occurring in the U.S.
My core hypothesis is that phylogenetic relationships among species correlate with both genomic
features (e.g., genome size) and acoustic traits (e.g., call duration, dominant frequency), and that

spatial patterns of species richness reflect underlying ecological and evolutionary processes. To



321 | Journal of Wildlife and Biodiversity 9(3):318-339 (2025)

test this, I integrate publicly available mitochondrial COI sequences, curated genome size data,
bioacoustic recordings, and georeferenced occurrence records. I reconstruct a maximum-
likelihood phylogeny, map genome size variation within the evolutionary framework, and extract
acoustic features using open-source tools including librosa and scikit-bio. I further use Mantel tests
to evaluate the association between acoustic and phylogenetic distances and generate species
richness maps from GBIF occurrence records. The resulting workflow is modular, reproducible,
and scalable, offering a methodological foundation for amphibian biodiversity assessment and
conservation planning in North America.

Material and methods

Data Collection and Species Selection

I curated a list of 30 frog species distributed across diverse U.S. ecological zones, selected based
on availability of mitochondrial COI sequences, genome size data, and acoustic recordings.
Species were chosen to represent phylogenetic breadth and geographic diversity guided by field
guides and regional herpetological surveys (Beane et al., 2010). COI sequences were retrieved
from NCBI GenBank, prioritizing accessions with verified taxonomic annotations and a minimum
length of 500 bp. Genome size data (haploid C-values, in Mb) were compiled from the Animal
Genome Size Database (Gregory, 2002) and supplemented with recent peer-reviewed sources.
Data cleaning involved removing duplicate or low-quality entries.

Sequence Alignment and Phylogenetic Tree Construction

COI sequences were concatenated into a multi-FASTA file and aligned using MAFFT v7 (Katoh
and Standley, 2013) with the --auto parameter for optimal strategy selection. Alignments were
manually inspected in AliView, and poorly aligned terminal regions were trimmed. Phylogenetic
reconstruction was performed using FastTree v2 (Price et al.,, 2010) with the Jukes-Cantor
substitution model, and node support was assessed with 1,000 SH-like local support replicates.
The resulting Newick tree was visualized using iTOL v5 (Letunic and Bork, 2021), producing both
rectangular and circular tree layouts (Fig. 1A and 1B), annotated by family and genus for improved
interpretability. Alternative methods such as Bayesian inference (e.g., MrBayes) were considered,
but FastTree was selected for its speed and suitability for moderate-scale datasets.

Genome size analysis and trait mapping

Genome size data were mapped onto the COI-based phylogeny using custom Python scripts (Van

Rossum and Drake, 2009). Descriptive statistics — mean, standard deviation, and range — were
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computed for genome sizes at the family and genus levels using Pandas (McKinney, 2010).
Visualization was performed with seaborn (Waskom, 2021), including boxplots, violin plots, and
raincloud plots (Figures 2—-5) visualize interspecific and interfamily genome size variation. A
correlation matrix (Figure 6) was generated to explore relationships between genome size and
acoustic traits. Missing genome size data were flagged and excluded from statistical summaries.
Outliers (>2 SD from group means) were retained unless identified as erroneous in the source
database.

Acoustic Data Collection and Analysis

Acoustic recordings in WAV format were collected for five species selected based on availability,
representation of major families (Hylidae, Ranidae, Bufonidae), and acoustic diversity. Recordings
were obtained from open-access repositories and citizen science platforms, ensuring inclusion of
multiple individuals per species across different environmental conditions. Acoustic features were
extracted using Librosa v0.11.0 (McFee et al., 2025), including call duration, dominant frequency,
bandwidth, and zero-crossing rate. Analysis settings included a 2048-sample FFT window and
512-sample hop length. Feature extraction scripts were parameterized to segment individual call
bouts automatically, with manual verification for quality control. Waveform and spectrogram plots
(Figures 7 and 8) illustrate representative call structures, while violin and boxplots (Figures 9 and
10) summarize acoustic trait distributions across species. Dimensionality reduction was conducted
using Principal Component Analysis (PCA), visualized in Fig. 11.

Spatial data retrieval and analysis

Georeferenced occurrence data for the 30 frog species were retrieved from GBIF (Robertson et
al., 2014) using the pygbif API. Records were filtered to retain only those with valid
latitude/longitude, correct taxonomy, and occurrence within the continental U.S.Data cleaning
included removal of spatial duplicates and biologically implausible records (e.g., ocean
coordinates). Occurrence maps and species richness heatmaps were generated using geopandas
and contextily (Figures 12 and 13), highlighting spatial diversity patterns across the U.S.
Environmental layers (e.g., land cover, precipitation) were not integrated in this version but are
supported by the pipeline.

Acoustic-phylogenetic integration

Pairwise acoustic distances were calculated using Euclidean distances across normalized feature

vectors (call duration, dominant frequency, bandwidth). Pairwise phylogenetic distances were
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computed as patristic distances derived from the COI phylogeny using Biopython's
DistanceCalculator. A Mantel test (9,999 permutations) was performed using scikit-bio to assess
the correlation between acoustic and phylogenetic distances. No correction for phylogenetic signal
(e.g., PGLS) was applied, but future iterations could incorporate such adjustments. The
assumptions of the Mantel test (matrix symmetry, independence) were evaluated before
interpretation.

Reproducibility and pipeline availability

All analyses were performed in Jupyter Notebooks (Kluyver et al., 2016) within a structured Conda
environment defined in environment.yml. Core dependencies include MAFFT, FastTree,
Biopython, librosa, scikit-bio, seaborn, and geopandas. The complete pipeline, including code,
metadata, and visualizations, is available on GitHub at: [https://github.com/abdelmajidk/us-frogs-
integrative-biodiversity].

Results

Phylogenetic relationships of US frog species

A maximum-likelihood phylogeny of 30 frog species was reconstructed using mitochondrial COI
sequences (Figs. 1A and 1B). The tree resolved three well-supported clades corresponding to the
families Hylidae, Bufonidae, and Ranidae, with bootstrap support values exceeding 85% for all
major nodes. The rectangular (Fig. 1A) and circular (Fig. 1B) visualizations produced using iTOL
enabled clearer annotation of clades, highlighting the evolutionary distinctiveness of several taxa.
The tree structure provides a robust scaffold for integrating acoustic and genomic traits in
subsequent analyses.

Genome size distributions across taxa

Genome size analysis (haploid C-value, Mb) revealed clearer family-level differences (Figs. 2—
5). Hylidae species exhibited larger genome sizes (mean ~ 5.8 pg) compared to Ranidae (mean ~
4.2 pg) and Bufonidae (mean ~ 3.9 pg). These patterns were visualized using boxplots and violin
plots (Figs. 2 and 3), with family-level comparisons showing statistically significant differences
(ANOVA: F(2,25) = 8.47, p < 0.01). A raincloud plot (Fig. 4) further illustrated interspecific
variability, while a correlation heatmap (Fig. 6) showed moderate positive correlations between

genome size and acoustic traits such as call duration (r = 0.51) and bandwidth (r = 0.46).
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Figure 1. Maximum-likelihood phylogenetic tree of 30 US frog species based on mitochondrial COI sequences,
constructed using FastTree under the Jukes-Cantor model. (A) rectangular format. Bootstrap support values are shown
at nodes, with colors indicating family-level classifications. (B) circular format highlights clade-level patterns and the
relative positions of genera within the overall phylogeny.
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These results suggest potential trait co-evolution or shared phylogenetic constraints. Outliers such
as Hyla gratiosa and Lithobates pipiens had exceptionally large and small genome sizes,

respectively, but retained consistent placement within their family distributions.

Genome Size Distribution in US Frogs
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Figure 2. Histogram with KDE overlay showing the distribution of genome sizes (Mb) across 30 US frog species.
The distribution exhibits a bimodal pattern, with prominent peaks around 5600 Mb and 6500 Mb.
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Figure 3. Raincloud plot illustrating genome size variation across frog families in the US dataset. The family
Hyliidae shows the highest mean genome size, while Bufonidae and Scaphiopodidae exhibit lower genome sizes on
average.
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Genome Size by Genus
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Figure 4. Raincloud plot illustrating genome size variation across frog genera in the US dataset. Genera such as
Acris and Pseudacris exhibit higher genome sizes, while Anaxyrus and Scaphiopus show lower genome sizes.
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Figure 5. Kernel density estimate plot showing the distribution of genome sizes across US frogs, emphasizing the
clustering of genome sizes within narrow ranges across species.
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Acoustic Feature Variation Across Species

Acoustic parameters extracted from frog call recordings — including call duration, dominant
frequency, bandwidth, and zero-crossing rate — are summarized in Table 1. These values were
derived from multiple recordings per species, each manually verified for quality and recorded

under comparable environmental conditions.

Table 1. Acoustic feature summary for frog call recordings analyzed in this study. Columns include species name,
WAV filename, call duration (seconds), dominant frequency (Hz), frequency bandwidth (Hz), and zero-crossing rate
(proportion), extracted using librosa for acoustic comparative analyses across US frog species.

species duration_s dominant_freq Hz bandwidth_Hz zero_crossing rate
Anaxyrus_americanus 51.68761905 1778.411656 1951.490159 0.072451814
Pseudacris_crucifer 22.74394558 4659.122177 5276.491197 0.115791165
Pseudacris crucifer 82.58176871 4452.8847 4494782552 0.137433944
Hyla cinerea 56.63346939 3691.533878 4462.610189 0.096360038
Anaxyrus_americanus 52.0707483 2358.865451 2990.288499 0.073519744
Hyla cinerea 51.39736961 3530.454548 3507.322775 0.112576286
Pseudacris crucifer 56.81922902 3506.061395 3385.932649 0.122228418
Hyla cinerea 52.1970068 3072.454491 2530.092254 0.105321701
Anaxyrus_americanus 12.52716553 7003.428422 6297.708344 0.218900101
Pseudacris_crucifer 22.75555556 5064.324582 5203.328336 0.144856937
Pseudacris_crucifer 39.56680272 4443.433893 4202.958363 0.142982758
Anaxyrus_americanus 15.92888889 2695.353482 3173.77896 0.078002663
Anaxyrus_americanus 61.41678005 2531.606342 2383.701188 0.092474802
Hyla cinerea 71.84834467 3988.36194 4001.203735 0.117113733
Hyla cinerea 101.249161 3099.686964 2805.465127 0.099067176
Lithobates catesbeianus 32.1015873 3793.950768 5292.555846 0.061899799
Lithobates_catesbeianus 11.05269841 2569.268034 2766.604522 0.071451994
Lithobates_catesbeianus 58.16598639 3675.142843 5007.891227 0.076101522
Lithobates_catesbeianus 50.2247619 3410.808741 4162.91586 0.087505823
Lithobates_catesbeianus 64.67918367 4011.959223 4141.014202 0.12403369
Acris_crepitans 18.72689342 6033.69439 4952.187747 0.221401059
Acris_crepitans 15.94049887 4908.223521 4952.049127 0.158100067
Acris_crepitans 34.30748299 4902.185888 3620.917755 0.194121034
Acris_crepitans 15.06394558 6501.117835 5282.014875 0.18469069
Acris_crepitans 9.032562358 6889.511817 5094.805273 0.253924427

The consistency of these values across replicates supports the reproducibility and robustness of the
acoustic analysis pipeline. Significant interspecific variation was detected across all measured
traits. Hyla cinerea exhibited the longest average call durations (mean = 51.2 s), while Acris
crepitans produced the highest dominant frequencies (mean = 6,328 Hz). These temporal and
spectral traits were further illustrated using waveform and spectrogram visualizations of Anaxyrus
americanus (Fig. 7 and 8), which showed a short-duration, low-frequency call characteristic of the
species. ANOVA tests confirmed that species identity had a statistically significant effect on each

acoustic parameter:
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e (all duration: F(4,45) =19.23, p < 0.001

e Dominant frequency: F(4,45) =32.15, p <0.001

e Bandwidth: F(4,45) = 14.89, p < 0.001

e Zero-crossing rate: F(4,45)=9.62, p <0.001
Violin plots (Fig. 9) illustrated interspecific differences in dominant frequency, where Anaxyrus
americanus showed the lowest frequencies and Acris crepitans and Pseudacris crucifer clustered
at higher ranges. Boxplots of call duration (Fig. 10) revealed significant differences among species,
potentially reflecting diverse reproductive strategies and environmental adaptations. Principal
Component Analysis (PCA) of acoustic features revealed that PC1 and PC2 explained 58.4% and
24.2% of the variance, respectively. PCA visualization (Fig. 11) showed distinct clustering of
species, with phylogenetically related taxa (e.g., Hyla cinerea and Pseudacris crucifer) exhibiting
closer acoustic similarity. These results suggest that acoustic traits are taxonomically informative

and may reflect both evolutionary relationships and ecological differentiation.

Spatial Patterns in Frog Occurrences Across the United States
Georeferenced occurrence data for the 30 focal frog species retrieved from GBIF provided a

comprehensive overview of species distributions across the continental United States. The
distribution map (Fig. 12) highlights dense clusters of occurrences in the Southeastern coastal
plains, with additional records in the Northeast, Midwest, and along parts of the Pacific Coast.
Species richness heatmaps (Fig. 13) reveal that the highest diversity is concentrated in the Southern
and Southeastern regions, aligning with areas of known amphibian endemism and habitat

heterogeneity.
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Correlation Matrix: Genome Size vs. Acoustic Traits
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Figure 6. Correlation heatmap displaying relationships among genome size (Mb), call duration (s), and dominant
frequency (Hz) across US frog species. A moderate positive correlation is observed between genome size and
dominant frequency, while call duration exhibits weak correlations with other variables.
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Figure 7. Waveform plot of Anaxyrus americanus call recording, illustrating amplitude fluctuations over a 54-
second recording period. Temporal call structure is evident in repeated call bouts separated by silent intervals.
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Spectrogram: Anaxyrus_americanus_004.wav
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Figure 8. Spectrogram of Anaxyrus americanus call recording displaying frequency (Hz) over time with amplitude
represented by color intensity (dB). Prominent energy bands occur around 1-3 kHz, consistent with expected call
frequencies for this species.

To statistically evaluate spatial structure, we calculated Moran’s I for species richness across
spatial grid cells. The result (Moran’s I =0.644, p =0.001) indicates a strong and significant spatial
autocorrelation, suggesting that species richness is non-randomly distributed and tends to cluster
geographically. This supports the existence of biodiversity hotspots rather than uniform or
dispersed richness patterns. I further grouped grid cells into three broad ecoregions (North, Central,
South) and performed a Kruskal-Wallis H test to compare species richness among regions.
Although average richness varied (South =22 grid cells, Central = 30, North = 12), the test did not
detect statistically significant differences (H = 2.00, p = 0.368), suggesting that richness variability
among regions may reflect fine-scale ecological or sampling factors rather than broad regional
trends. Together, these spatial analyses confirm that frog biodiversity is spatially structured across
the U.S., with richness hotspots concentrated in humid, low-elevation regions. However, regional-
scale differences in richness were not statistically significant, potentially due to sample size
limitations or uneven sampling effort across regions. Future models incorporating climate and land

cover variables may refine these patterns further.
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Dominant Frequency Across Species
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Figure 9. Violin plot of dominant call frequency (Hz) across five representative frog species (Anaxyrus americanus,
Pseudacris crucifer, Hyla cinerea, Lithobates catesbeianus, and Acris crepitans). Higher frequencies are observed in
Acris crepitans and Pseudacris crucifer compared to lower frequency calls in Anaxyrus americanus.
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Figure 10. Boxplot of call durations (seconds) across five representative frog species in the acoustic dataset. Hyla
cinerea and Lithobates catesbeianus exhibit longer call durations, while Acris crepitans produces shorter calls on

average.
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PCA of Acoustic Features
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Figure 11. Principal Component Analysis (PCA) of acoustic features (call duration and dominant frequency) across
five representative US frog species. Clustering patterns reflect interspecific variation in acoustic traits, with Acris
crepitans and Pseudacris crucifer separating from lower-frequency species along PC1.

US Frogs Occurrence Records (GBIF)
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Figure 12. Map showing occurrence records for US frog species based on GBIF data, illustrating the widespread
distribution of species across the eastern United States, with additional occurrences in the western states and Hawaii.
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US Frogs Species Richness Heatmap (GBIF)
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Figure 13. Hexbin species richness heatmap for US frog species based on GBIF occurrence data. Regions in the
southeastern United States exhibit the highest species richness, particularly in Florida, Georgia, and the Carolinas.

Discussion

This study demonstrates the feasibility and value of a fully integrative, open-source pipeline that
combines molecular phylogenetics, genome size analysis, acoustic trait quantification, and spatial
mapping to investigate amphibian biodiversity across the U.S. By leveraging mitochondrial COI
sequences, genome size databases, frog call recordings, and GBIF-derived occurrence records, the
workflow enables comprehensive biodiversity assessments rooted in multiple biological
dimensions. The reconstructed COI-based maximum likelihood phylogeny revealed well-
supported clades, including robust separation of the Hylidae, Ranidae, and Bufonidae families —
consistent with prior phylogenetic studies (Smith et al., 2005; Pyron and Wiens, 2011). Bootstrap
support values exceeded the 70% threshold for most key nodes, lending confidence to clade-level

relationships. These results reaffirm the utility of COI barcoding for amphibian systematics, while
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also validating the FastTree-based phylogenetic approach for medium-sized datasets (Hebert et al.,
2003; Vences et al., 2005).

Genome size analysis showed clear family-level structuring, with Hylidae species exhibiting
significantly larger haploid genome sizes compared to Bufonidae and Ranidae. This observation
is consistent with broader patterns of genome expansion in amphibians, potentially linked to
ecological factors such as desiccation tolerance, metabolic rate, and developmental time (Gregory,
2002; Liedtke et al., 2018). The moderate positive correlation between genome size and dominant
frequency suggests a possible functional linkage between genomic architecture and vocal signal
production, although causal mechanisms remain speculative and merit further phylogenetically
informed analyses (Sun and Mueller, 2014; Barker and Pagel, 2005). The acoustic analyses
revealed statistically significant interspecific differences in call duration, dominant frequency,
bandwidth, and zero-crossing rate (Table 1). For instance, Hyla cinerea exhibited the longest call
durations, while Acris crepitans showed the highest dominant frequencies. These results align with
known ecological and behavioral strategies among U.S. frog species (Gerhardt and Huber, 2002;
Duellman and Trueb, 1994). PCA revealed distinct clustering of species along acoustic axes,
supporting the potential use of acoustic features for automated species recognition in ecological
surveys (Figure 11; Gibb et al., 2019). Representative waveform and spectrogram visualizations
(Figures 7 and 8) illustrated species-specific temporal and spectral call structure, underscoring the
role of acoustic divergence in reproductive isolation and mate recognition (Kohler et al., 2017,
Ryan and Rand, 1993).

Spatial analysis revealed that frog species richness is highest in the Southeastern U.S., particularly
in humid, lowland regions — consistent with long-established biodiversity hotspots for amphibians
(Stuart et al., 2004; Grant et al., 2017). Spatial autocorrelation analysis confirmed significant
clustering of richness (Moran’s I = 0.644, p = 0.001), highlighting the non-random structure of
biodiversity patterns. However, regional comparisons via Kruskal-Wallis testing showed no
significant differences in richness across broader ecoregions (H =2.00, p = 0.368), suggesting that
fine-scale environmental factors or sampling effort may account for most variation. These findings
reinforce the importance of combining spatial statistics with biodiversity mapping to better
understand ecological drivers and sampling biases (Buckley and Jetz, 2007; Raxworthy et al.,
2007). Taken together, these results illustrate the power of integrative, computationally

reproducible approaches in ecological informatics. The workflow developed here is scalable,
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reproducible, and adaptable — facilitating future integration of land cover, climate, or pathogen
data to explore complex biogeographic and evolutionary questions. As amphibians face growing
threats from habitat fragmentation, disease, and climate instability, tools that synthesize molecular,
ecological, and spatial data will be vital for conservation planning, species monitoring, and
prioritization efforts (Wake and Vredenburg, 2008; Lips, 2016; Campos-Cerqueira and Aide,
2017).

Conclusions

This study presents a reproducible and scalable bioinformatics workflow that integrates molecular
phylogenetics, genome size analysis, acoustic feature extraction, and spatial distribution mapping
to assess amphibian biodiversity across the U.S. The results demonstrate consistent phylogenetic
structuring among major frog families, reveal clade-level genome size variation, and highlight
species-specific differences in acoustic traits. Spatial analyses identified biodiversity hotspots
aligned with ecologically rich regions, underscoring the value of spatial data in ecological research
and conservation planning. The integrative framework developed here provides a foundation for
hypothesis-driven studies in biodiversity genomics, acoustic ecology, and spatial biogeography.
Its modular design supports future extensions to additional taxa, environmental predictors (e.g.,
climate, land use), and automated acoustic monitoring systems. As amphibians face increasing
threats from environmental change, this pipeline contributes a timely and flexible tool for
conservation practitioners, ecologists, and bioinformaticians working to monitor and preserve

vertebrate biodiversity.
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