**Online ISSN: 2588-3526** 



Volume 9(2): 229-240 (2025) (http://www.wildlife-biodiversity.com/)

**Research Article** 

# Phytocenology of the species *Satureja macrantha* C.A. Mey. and *Satureja laxiflora* C. Koch, belonging to the Genus *Satureja* L. in the Nakhchivan Autonomous Republic

## Shafiqa Suleymanova<sup>1</sup>, Elsevar Asadov<sup>1\*</sup>

<sup>1</sup>Department of Basic Medical, Faculty of Medical. Nakhchivan State University, Nakhchivan, Azerbaijan \*Email: asadoves1974@gmail.com

Received: 19 February 2025 / Revised: 05 May 2025 / Accepted: 06 May 2025/ Published online: 06 May 2025.

How to cite: Gadirzade, F., Taghiyev, A. (2025). Phytocenology of the species Satureja macrantha C.A. Mey. and Satureja laxiflora C. Koch, belonging to the Genus Satureja L. in the Nakhchivan Autonomous Republic, Journal of Wildlife and Biodiversity, 9(2), 229-240. DOI: https://doi.org/10.5281/zenodo.15512733

### Abstract

Savory (*Satureja* L.) is widespread in the plains, foothills, low mountains, and other areas of the Nakhchivan MP, as well as in the lower, middle, and partially upper mountain belts. Three species of Savory (Satureja L.) have been identified, the distribution of which in the territory has been established: Satureja macrantha C.A. Mey., *Satureja laxiflora* C. Koch, and *Satureja hortensis* L. All these plants are valuable, essential plants. The phytocenological characteristics of Savory plants were studied using geobotanical methods. In the Ordubad Julfa, Babek, Sadarak, and Kengerli districts, geobotanical indicators and natural resources were calculated using experimental methods.

Keywords: Satureja, Satureja macrantha, Satureja laxiflora, Garden wild mint, lowland

## Introduction

The Nakhchivan Autonomous Republic is a predominantly mountainous country. Both in the mountainous part of the region and in the study area, which covers large areas, numerous plains, intermontane meadows, cliffs, dry stony-rocky slopes, rock outcrops, sand dunes, sandy-gravelly areas, river valleys, and low hills around lakes and reservoirs cover large areas (Babayev, S., 1999). The mentioned ecological conditions are the main habitats where the plant species of the genus Satureja L. develop and spread. Each of these places has its own unique flora and vegetation. Together they form the dry stony-rocky ecosystem of the area. Satureja is widely distributed in the

Aras-bound plains of the Nakhchivan Autonomous Republic, in the foothills, in the low mountains and other areas, as well as in the lower, middle and partly in the upper mountain belt.

The distribution of 3 species of wild mint in the area has been determined: Wild mint - Satureja macrantha C.A. Mey., Wild mint - Satureja laxiflora C. Koch and Garden (Scented) wild mint - S. hortensis L., are valuable essential oil plants (Mursal, S., et al, 2014; Ibadullayeva, S., et al, 2015; Azizollahi, Z., et al, 2019; Ибрагимов, A. III., et al, 2019; Novruzov, E., et al, 2021; Aliyeva, H. M., et al, 2024). The phytocenological characteristics of desert mint plants were studied using geobotanical methods. In each region, geobotanical indicators and natural resources were calculated using experimental methods (Alakbarov R.A., et al, 2017; Suleymanova, Sh.T. & Seyidov, M.M., 2020; Kolaylı, S., et al, 2024; Suleymanova, S., 2024)

#### Martial and methods

As a result of long-term research conducted in the flora of the Nakhchivan Autonomous Republic, it was determined that 4 species of the genus Satureja L. - Satureja macrantha C.A. Mey., S. laxiflora C. Koch, S. mutica Fisch. et Neg., S. sativa A.Sh. are widespread in the area.

They can be found in almost all areas of the autonomous republic. (Figure 1). The species Satureja macrantha C.A. Mey. and Satureja laxiflora C. Koch, which are widespread in the flora of the Nakhchivan Autonomous Republic, were taken as research material. Both the large-flowered wild mint - Satureja macrantha C.A. Mey., and the loose-leafed wild mint - Satureja laxiflora C. Koch species are species that mainly prefer xerophytic areas, spreading in the stony-rocky areas, bushes and scrublands of the lower and middle mountain belts of the Ordubad, Julfa, Sadarak and Shahbuz regions of the autonomous republic.

Routes were organized in various zones, geobotanical analyses were conducted during the research. During field research, herbarium specimens were collected and studied from these areas during expeditions organized to various areas.



Figure 1. Distribution zones of species belonging to the genus Satureja L.

- Satureja macrantha C.A.Mey.
- 💥 Satureja laxiflora C. Koch
- ✤ Satureja mutica Fisch. et Neg.
- Satureja sativa A.Sh.

Field research was mainly conducted using ecological, floristic, systematic, phenological and modern methods, in expeditions and route conditions, the collected herbarium materials were processed using modern botanical-floristic methods and the "Flora Azerbaijana" (1957) and internet sites [Bordbar, F., & Mirtadzadini, M., 2024) were used for their identification. The life forms of plants were determined according to the systems of S.R. Raunkier (1934) and I.G. Serebryakov [Rakhimov, G., et al, 2023], the types of geographical areas of the studied plants were given according to A.A. Grossheim (1936) and N.N. Portenier (2000). Systematic taxa were specified according to T. H. Talybov, A., and Sh. Ibrahimov (2008).

#### **Results and discussion**

The conducted studies have led to the conclusion that the species of desert mint, which are mainly xerophytic plants, are more widespread in arid areas. In this regard, the plains, foothills and lower mountain belts are considered their main habitat. Satureja macrantha S.A. May. is found in the Nokhuddag, Nehramdag, Nehram-Daresham, Daridag, Alinjagala, Nahajir Mountain, Ilanli Mountain, Aracig Mountain, Demirli Mountain, Kohne Kotam gorge and the surrounding steep

Rocky Mountains (Alakbarov, R., & Suleymanova, S., 2021; Flora of Azerbaijan, 1957). It occurs singly in a number of different types of phytocenoses. In some newly discovered areas, it develops abundantly, forming the Saturejeta macranthae formation and the Saturejetum macranthosum association (Figure 2).



Figure 2. Saturejeta macranthae formation in the Mamedey Gorge and Demir Dağ

The newly discovered plant groups are located between the Kotam village of Ordubad region and Soyugdag, covering a very wide area, and in particular, the grouping of the *S. macrantha* C.A. Mey. species with the *Colutea comarova, Atrophaxis angustifolius*, and *Zygophyllum atriplicoides* species typical for the flora of the Nakhchivan MR is very interesting from a scientific and theoretical point of view. The inclusion of Thymus collinus Bieb., Iris imbricata Lindl., I. lycotis L., Hypericum scabrum L., Prangos uloptera DC., Artemisia lerchiana L., Phlomis caucasica Rech. fil., Ph. tuberosa L., Eremostachys iberica Vis. and other plant species in this grouping leads to the enrichment of the species composition of the grouping (Ibragimov, A. S., 2005; Suleymanova Sh.T., 2021). The project budget of the group is 60-65%.

In the Old Kotam Gorge of Ordubad district, in the surrounding Rocky Mountains, S. macrantha S.A. May. are located very close to each other. Here, an average of 2-3 and sometimes 5-6 species were recorded per sq.m. sample plot. In the places covered by the phytocenosis, the vegetation cover consists of trees, shrubs and grasses. Geophytes and sedges are dominant.

The project cover is 80-85%. 55% of it is S. macrantha C.A. May., 20% are trees, shrubs, the remaining 25% are various life forms: annuals, biennials, perennials and, from that, geophytes. As a result of the research, the species composition of plant groups of each area was determined

and the tables show the abundance, height, phenophase (flowering, fruiting) and stratification (tiering) of each species in phytocenoses (Table 1).

| Table 1. Species composition and structure of the phytocenosis dominated by Satureja macrantha C.A. |
|-----------------------------------------------------------------------------------------------------|
| Mey. around the village of Ohne Kotam, Ordubad district.                                            |

| No  | Plant's name                       | Abundance | Height, cm | Phenophase   | Category |
|-----|------------------------------------|-----------|------------|--------------|----------|
| 1.  | Satureja macrantha C.A. Mey.       | 1-2       | 15-45      | Flower-Fruit | II       |
| 2.  | Helichrysum callichrysum DC.       | 2-3       | 18-35      | Fruit        | II       |
| 3.  | Koelpinia linearis Pall.           | 2         | 15-30      | Fruit        | III      |
| 4.  | Ceratocarpus arenarius L.          | 3         | 19-25      | Fruit        | III      |
| 5.  | Hypericum linarioides Bosse        | 3         | 80-95      | Flower-Fruit | II       |
| 6.  | Salsola crassa Bieb.               | 3-4       | 5-50       | Flower       | III      |
| 7.  | Herniaria glabra L.                | 3         | 5-15       | Flower       | III      |
| 8.  | Spinacia tetrandra Stev.           | 1-2       | 10-40      | Fruit        | III      |
| 9.  | Tribulus terrestris L.             | 2         | 10-60      | Flower-Fruit | II       |
| 10. | Buglossoides arvensis (L.) Johnst. | 1-2       | 25-75      | Flower       | II       |
| 11. | Aegilops sylindrica Host           | 2-3       | 25-40      | Fruit        | III      |
| 12. | Atroplex tatarica L.               | 1-2       | 25-80      | Flower       | II       |
| 13. | Poa bulbosa L.                     | 2         | 10-20      | Fruit        | III      |
| 14. | Anabasis eugeniae İljin            | 2-3       | 37-45      | Flower-Fruit | III      |
| 15. | Acanthophyllum squarrosum Boiss.   | 2         | 20-50      | Flower       | III      |
| 16. | Achillea millefolium L.            | 4         | 35-50      | Flower       | II       |
| 17. | Hordeum leporina (L.) Sternb.      | 2         | 10-25      | flower       | III      |
| 18. | Camphorosma lessingii Litv.        | 2-3       | 10-35      | Fruit        | III      |
| 19. | Adonis flammeus Jacq.              | 2-3       | 10-45      | Fruit        | II       |
| 20. | Amoria ambigua Sojak               | 3         | 50-60      | Fruit        | III      |
| 21. | Eromopirum tritceum Nevski         | 2-3       | 10-30      | Fruit        | III      |
| 22. | Velezia rigida L.                  | 2         | 10-50      | Fruit        | III      |

Similarly, the species composition of plant groups including the species Satureja macrantha C.A. Mey., found in the Vang area of the Julfa region, was determined, and the abundance, height, phenophase (flowering, fruiting), and stratification of each species in phytocenoses were shown in the tables (Table 2).

**Table 2.** Species composition and structure of the phytocenosis formed with the participation of the species Satureja macrantha C.A. Mey. in the Vang area of the Julfa region.

| No | Plant's name                     | Abundance | Height, cm | Phenophase   | Category |
|----|----------------------------------|-----------|------------|--------------|----------|
| 1. | Satureja macrantha C.A. Mey.     | 1-2       | 60-70      | Flower       | III      |
| 2. | Juniperus communis L.            | 1-2       | 7-20       | Flower-Fruit | IV       |
| 3. | Daphne mucronata Royle           | 2         | 35-50      | Fruit        | III      |
| 4. | Astracantha microcephala Podlech | 3         | 35-45      | Fruit        | III      |

| 5.  | Adonis flammeus Jacq.                   | 2-3 | 10-45     | Fruit        | III |
|-----|-----------------------------------------|-----|-----------|--------------|-----|
| 6.  | Amoria ambigua Sojak                    | 3   | 50-60     | Flower       | III |
| 7.  | Eromopirum tritceum Nevski              | 2-3 | 10-30     | Fruit        | IV  |
| 8.  | Rosa canina L.                          | 1-2 | 2,5-3,0 m | Fruit        | Ι   |
| 9.  | Tribulus terrestris L.                  | 2   | 10-60     | Flower-Fruit | III |
| 10. | Pyrus salicifolia Pall.                 | 1-2 | 4,5-6-7 m | Flower       | Ι   |
| 11. | Aegilops sylindrica Host                | 2-3 | 25-40     | Fruit        | III |
| 12. | Atroplex tatarica L.                    | 1-2 | 25-80     | Flower       | III |
| 13. | Euphorbia marschalliana Boiss.          | 3-4 | 15-40     | Flower-Fruit | III |
| 14. | Euphorbia szovitsii Fisch. et C.A. Mey. | 1-2 | 2-10      | Flower-Fruit | IV  |
| 15. | Koelpinia linearis Pall.                | 2   | 15-30     | Fruit        | III |
| 16. | Rhamnus pallasii Fisch.                 | 3   | 1,9-2,0 m | Fruit        | Ι   |
| 17. | Hypericum linarioides Bosse             | 3   | 80-95     | Flower       | II  |
| 18. | Achillea millefolium L.                 | 3-4 | 35-50     | Flower       | III |
| 19. | Hordeum leporina (L.) Sternb.           | 2   | 10-25     | Flower       | IV  |
| 20. | Coteneaster melanocarpus Fisch.         | 2-3 | 1,0-1,5 m | Fruit        | Ι   |
| 21. | Poa bulbosa L.                          | 2   | 10-20     | Fruit        | III |
| 22. | Helichrysum callichrysum DC.            | 2-3 | 18-35     | Fruit        | III |
| 23. | Stachys inflata Btnth.                  | 3   | 15-20     | Fruit        | IV  |

6-8 and 10-12 plants were recorded in  $1m^2$  in relatively dense areas of the grassland.



Figure 2. S. macranthae formation around the villages of Shurut and Gal, Julfa district.

The herbaceous vegetation includes 35-50 plant species. The most prominent are 26 species, of which 10 species: Ceratocarpus arenarius L., Suaeda microphylla Pall., Kochia prostrata (L.) Schrad., Aegilops sylindrica Host, Petrosimonia brachyata (Pal) Bunge, Salsola dendroides Pall., Euphorbia sequeriana L., Halocnemum strobilaceum (Pall) Bieb., Atriplex tatarica L., Camphorosma lessingii Litv. have a significant impact on the formation, vitality, and productivity of vegetation (Suleymanova Sh.T. & Seyidov M.M., 2020; Suleymanova Sh.T., 2021).

**Table 3.** Species composition and structure of phytocenosis with the presence of Satureja laxiflora C. Koch in the Chalkhangala, Lizbirt, and Buzgov valleys of Babek district.

| N⁰  | Plant's name                       | Abundance | Height, | Phenophase   | Category |
|-----|------------------------------------|-----------|---------|--------------|----------|
|     |                                    |           | cm      |              |          |
| 1.  | Sature ja laxiflora C. Koch        | 1-2       | 15-30   | Flower-Fruit | III      |
| 2.  | Callygonum aphillum (Pall.) Gurke. | 2-3       | 180-200 | Fruit        | Ι        |
| 3.  | Rheum rupestre Litw.               | 1-2       | 95-100  | Flower       | Ι        |
| 4.  | Euphorbia marschalliana Boiss.     | 4         | 30-45   | Flower-Fruit | II       |
| 5.  | Chenopodium botrys L.              | 3-4       | 25-40   | Fruit        | II       |
| 6.  | Chenopodium vulvaria L.            | 2-3       | 15-40   | Flower-Fruit | III      |
| 7.  | Poa bulbosa L.                     | 2         | 10-20   | Fruit        | III      |
| 8.  | Koelpinia linearis Pall.           | 2         | 15-30   | Flower       | III      |
| 9.  | Halostachys caspica UngSternb      | 4         | 150-200 | Flower       | Ι        |
| 10. | Hordeum leporina (L.) Sternb.      | 2         | 10-40   | Flower       | III      |
| 11. | Adonis flammeus Jacq.              | 2-3       | 10-50   | Fruit        | II       |
| 12. | Eromopirum tritceum Nevski         | 2-3       | 10-30   | Fruit        | III      |
| 13. | Spinacia tetrandra Stev.           | 1-2       | 10-40   | Fruit        | III      |
| 14. | Kalidium capsicum (L.) Ung-Sternb. | 4-5       | 10-70   | Flower-Fruit | III      |
| 15. | Thesim szovitsii DC.               | 2         | 20-50   | Flower       | III      |

Similar studies have been conducted in some characteristic places of the regions of the autonomous republic, for example, in the Sadarak floodplain, Shish Tepe, Garatorpaglar of the Sadarak region, Velidag and Dahnadag of the Sharur region, Boyukduz, Duzdag of the Kangarli region, Kolani, Kand Shahbuz, Gizil Qishlag areas of the Shahbuz region, and in the Ilanlıdag, Babek Galasi, Alinja Galasi, Aracıqdag, Demirlidag areas of the Julfa region, and the results obtained are given in the relevant tables (Tables 4,5,6).

**Table 4**. Species composition and structure of phytocenosis with the presence of Satureja laxiflora C.Koch in the areas called Sadarak Selov, Shish Tepe, and Garatorpaglar of the Sadarak district.

| N₂  | Plant's name                   | Abundance | Height, cm | Phenophase   | Category |
|-----|--------------------------------|-----------|------------|--------------|----------|
| 1.  | Satureja laxiflora C. Koch     | 1-2       | 12-18      | Flower-Fruit | IV       |
| 2.  | S. sativa A.Sh. İbrahimov      | 2         | 35-50      | Fruit        | III      |
| 3.  | Astragalus tribuloides Delile  | 3         | 10-15      | Fruit        | IV       |
| 4.  | Adonis flammeus Jacq.          | 2-3       | 10-45      | Fruit        | II       |
| 5.  | Amoria ambigua Sojak           | 3         | 50-60      | Flower       | III      |
| 6.  | Eromopirum tritceum Nevski     | 2-3       | 10-30      | Fruit        | III      |
| 7.  | Spinacia tetrandra Stev.       | 1-2       | 10-40      | Fruit        | III      |
| 8.  | Tribulus terrestris L.         | 2         | 10-60      | Flower-Fruit | Π        |
| 9.  | Aegilops sylindrica Host       | 2-3       | 25-40      | Fruit        | III      |
| 10. | Atroplex tatarica L.           | 1-2       | 25-80      | Flower       | II       |
| 11. | Euphorbia marschalliana Boiss. | 3-4       | 15-40      | Flower       | Π        |
| 12. | Koelpinia linearis Pall.       | 2         | 15-30      | Fruit        | III      |
| 13. | Ceratocarpus arenarius L.      | 3         | 19-25      | Fruit        | III      |
| 14. | Hypericum linarioides Bosse    | 3         | 80-95      | Flower       | II       |
| 15. | Achillea millefolium L.        | 3-4       | 35-50      | Flower       | Ι        |
| 16. | Hordeum leporina (L.) Sternb.  | 2         | 10-25      | Flower       | III      |

| 17. | Camphorosma lessingii Litv.       | 2-3 | 10-35 | Fruit | III |
|-----|-----------------------------------|-----|-------|-------|-----|
| 18. | Poa bulbosa L.                    | 2   | 10-20 | Fruit | III |
| 19. | Helichrysum callichrysum DC.      | 2-3 | 18-35 | Fruit | II  |
| 20. | Hedipnois cretica (L.) Dum Cours. | 3   | 15-20 | Fruit | III |

**Table 5.** Species composition and structure of the phytocenosis with the presence of Satureja laxiflora C.Koch in the Boyukduz area of Kangarli district.

| N₂  | Plant's name                         | Abundance | Height, cm | Phenophase   | Category |
|-----|--------------------------------------|-----------|------------|--------------|----------|
| 1.  | Satureja laxiflora C. Koch           | 2-3       | 16-25      | Flower-Fruit | II       |
| 2.  | Andrachne buschiana Pojark.          | 2         | 13-35      | Flower-Fruit | II       |
| 3.  | Helichrysum callichrysum DC.         | 1-2       | 28-35      | Fruit        | II       |
| 4.  | Koelpinia linearis Pall.             | 3         | 16-25      | Flower-Fruit | III      |
| 5.  | Ceratocarpus arenarius L.            | 1-2       | 10-20      | Fruit        | III      |
| 6.  | Hypericum linarioides Bosse          | 2         | 85-90      | Flower-Fruit | II       |
| 7.  | Salsola crassa Bieb.                 | 2-3       | 15-23      | Flower       | III      |
| 8.  | Herniaria glabra L.                  | 1-2       | 4-10       | Flower       | III      |
| 9.  | Spinacia tetrandra Stev.             | 2         | 17-25      | Fruit        | III      |
| 10. | Tribulus terrestris L.               | 3         | 10-20      | Flower-Fruit | II       |
| 11. | Buglossoides arvensis (L.) Johnst.   | 1-2       | 24-70      | Flower       | II       |
| 12. | Aegilops sylindrica Host             | 2-3       | 15-30      | Fruit        | III      |
| 13. | Atroplex tatarica L.                 | 3         | 45-90      | Flower       | II       |
| 14. | Poa bulbosa L.                       | 2         | 12-18      | Fruit        | III      |
| 15. | Anabasis eugenia                     | 1-2       | 35-40      | Flower-Fruit | III      |
| 16. | Acanthophyllum squarrosum Boiss.     | 3         | 25-54      | Flower       | III      |
| 17. | Achillea millefolium L.              | 3-4       | 30-40      | Flower       | Π        |
| 18. | Hordeum leporina (L.)Sternb.         | 1-2       | 12-20      | Flower       | III      |
| 19. | Camphorosma lessingii Litv.          | 1-2       | 13-32      | Fruit        | III      |
| 20. | Adonis flammeus Jacq.                | 3         | 14-35      | Flower-Fruit | II       |
| 21. | Amoria ambigua Sojak                 | 1-2       | 40-55      | Flower       | III      |
| 22. | Eromopirum tritceum Nevski           | 3-4       | 10-15      | Fruit        | III      |
| 23. | Velezia rigida L.                    | 1-2       | 11-400     | Fruit        | III      |
| 24. | Allochrusa versicolor (Bieb.) Boiss. | 2-3       | 25-45      | Flower-Fruit | III      |

**Table 6.** Species composition and structure of phytocenosis with the presence of Satureja laxiflora C. Koch in the Aracig, Leketagh and Demirli mountains of Julfa region.

| N⁰ | Plant's name                               | Abundance | Height, cm | phenophase   | Category |
|----|--------------------------------------------|-----------|------------|--------------|----------|
| 1  | Satureja laxiflora C. Koch                 | 4         | 80-95      | Flower       | II       |
| 2  | Hordeum bulbosum L.                        | 4         | 120-150    | Flower-Fruit | Ι        |
| 3  | Deschampsia caespitosa (L.) Beauv.         | 3-4       | 60-70      | Flower       | III      |
| 4  | Phalaroides arundinaceae (L.) Rauschert    | 2         | 160-170    | Flower       | Ι        |
| 5  | Alopecurus ventricosus Poir.               | 2-3       | 50-65      | Flower-Fruit | III      |
| 6  | Calamagrostis epigejos (L.) Roth.          | 2-3       | 58-75      | Flower       | III      |
| 7  | Phragmites australis(Cav.) Trin. ex Steud. | 3         | 180-210    | Flower-Fruit | Ι        |
| 8  | Poa meyeri Trin. ex Roschev                | 2         | 34-42      | Flower       | IV       |

| 9  | Glyceria arundinacea Kunth.                   | 2-3 | 110-169 | Flower       | Ι   |
|----|-----------------------------------------------|-----|---------|--------------|-----|
| 10 |                                               | 3   | 45-60   | Flower       | III |
| 10 | Agropyrumrepens (Boiss. ex Steud.)<br>Grossh. | 5   | 43-00   | Flower       | 111 |
| 11 |                                               | 0.0 | 24.51   | <b>F</b> '   | TTT |
| 11 | Carex diandra Schrank                         | 2-3 | 34-51   | Fruit        | III |
| 12 | Dactylis glomerata L.                         | 3-4 | 100-130 | Flower       | II  |
| 13 | Gladiolus kotschyanus Boiss.                  | 3   | 75-80   | Flower-Fruit | III |
| 14 | Achillea millefolium L.                       | 3-4 | 90-95   | Flower       | III |
| 15 | Thalictrum minus L.                           | 3   | 160-185 | flower-Fruit | Ι   |
| 16 | Rhinanthus major L.                           | 3-4 | 46-52   | vegetation   | III |
| 17 | Geum urbanum L.                               | 2-3 | 65-78   | Flower       | III |
| 18 | Filipendula ulmaria (L.) Maxim.               | 3   | 98-110  | Flower       | II  |
| 19 | Trifolium pratense L.                         | 3-4 | 16-18   | Flower       | V   |
| 20 | T.medium L.                                   | 2-3 | 35-44   | Flower-Fruit | IV  |
| 21 | Lotus corniculatus L.                         | 3-4 | 16-25   | Flower-Fruit | V   |
| 22 | Securigeria varia (L.) Lassen                 | 1-2 | 40-59   | Flower       | IV  |
| 23 | Heracleum trachyloma Fisch. & C.A.Mey.        | 2   | 190-210 | Flower       | Ι   |
| 24 | Lathirus pratensis L.                         | 1-2 | 34-57   | Fruit        | IV  |
| 25 | Persicaria hydropiper L.                      | 2   | 89-100  | Flower       | II  |
| 26 | Astragalus cicer L.                           | 2-3 | 53-68   | Flower-Fruit | III |
| 27 | A.glyciphylloides DC.                         | 2   | 80-100  | Flower-Fruit | II  |
| 28 | Potentilla reptans L.                         | 2   | 12-15   | Flower       | V   |
| 29 | Briza media L.                                | 1-2 | 50-65   | Fruit        | III |
| 30 | Medicago lupinoides L.                        | 1-2 | 18-25   | Fruit        | V   |
| 31 | Cirsium hydrophyllum Boiss.                   | 2   | 120-150 | Flower-Fruit | Π   |
| 32 | Cynodon dactilon (L.) Pers.                   | 3   | 28-37   | Fruit        | IV  |
| 33 | Aeluropus littoralis (Gouan) Parl.            | 2-3 | 15-20   | Fruit        | V   |

The wild mint (*S. laxiflora*) is a plant widely distributed in the rocky and gravelly areas of the middle and high mountain belt of the Shahbuz region, as well as in other areas of the region, and mainly on the slopes. It is especially common on the rocky slopes and slopes around the villages of Kolanli and Bichenak (Alakbarov, R., & Suleymanova, S., 2021).

In general, although the distribution areas of both Satureja macrantha C.A. Mey. and Satureja laxiflora C. Koch. are often different, the species composition of phytocenoses is almost, and often similar to each other. The mentioned similarity also applies to the phytocenoses of the plant Satureja laxiflora C. Koch. However, Satureja laxiflora C. Koch develops in sparse groups on sandy, sandy-stony-gravelly, stony-rocky places and on outcrops without very hard rocks. It is distributed almost everywhere in the region at altitudes of 1200-1800 m. Although the composition of plant groups in the distribution areas of the species is mostly close to each other, some differences are noticeable. A grouping spread around the village of Bichenak included Scrophularia variegate Bieb., Scutellaria araxensis Grossh., Centaurea squarrosa Willd., Aethionema pulchellum Huet., Crupina crupinastrum Vis., Scabiosa bipinnata C. Koch, Galium

verum L., Eremostachys macrophylla Auch., Echinops sphaerocephalus L., Dactylis glomerata L., Helichrysum plicatum DC, Medicago sativa L., Centaurea glehnii Trautv., Bupleurum exaltatum Bieb., Eryngium billardieri Delaroche, Teucrium orientale L., Papaver orientale L., Euphorbia seguieriana Neck., Pyrethrum myriophyllum C.A.Mey., Scorzonera latifolia DC, Marrubium astracanicum Jacq, etc. Here, Satureja laxiflora C. Koch plants are located very close to each other, and in some places their above-ground parts are connected. The project yield varies between 65-80% (Suleymanova Sh.T. & Seyidov M.M., 2020).

#### Conclusion

Representatives of the genus Satureja L. do not participate in phytocenoses in equal quantities. They are found singly, distant from each other, and in some areas small groups are observed. They settle on dry grassy slopes, characteristic of xerophytic plants, on rocky, stony-rocky places, and on sparse grassy areas on slopes. In such groups, the plant cover is 60-65%, and in relatively favorable places - 70-80%. There are abundant natural resources of other useful plant groups formed by species belonging to the genus Satureja L., and consideration should be given to using these plants efficiently (food, medicine, perfumery, etc.).

#### References

- Alakbarov R.A., Mammadova N., Abbasov N.K. Use prospects of species of the Savory (*Satureja* L.) genus of the mint family (Lamiaceae Lindl.) widespread in the flora of the Nakhchivan Autonomous Republic // News of Nakhchivan Section of Azerbaijan National Academy of Sciences. The Series of Natural and Technical Science, 2017, № 4, s. 116-120
- Alakbarov, R., & Suleymanova, S. (2021). Spread in the flora of the Nakhchivan Autonomous Republic of Azerbaijan Satureja L. (wild grandmother) Biomorphological Characteristics, Results of Phytochemical Analysis and Perspectives of Use. *Journal of Apitherapy and Nature*, 4(1), 41-48.
- Aliyeva, H. M., Kadirova, H. A., Mammadova, N. H., Bairamova, R. S., Mansurova, H. T., Mehdiyeva, G. C., & Mukhtarova, N. A. (2024). Antimicrobial Effect of Satureja Hortensis Essential Oil Growing In Azerbaijan. World of Medicine and Biology, 20(90), 158-162. <u>https://doi.org/10.26724/2079-8334-2024-4-90-158-162</u>
- Askerov, A. M. (2016). The plant world of Azerbaijan (Embryophyta). Baku: TEAS Press Publishing House (in Azerbaijan).
- Azizollahi, Z., Ghaderian, S. M., & Ghotbi-Ravandi, A. A. (2019). Cadmium accumulation and its effects on physiological and biochemical characters of summer savory (Satureja hortensis L.). *International journal of phytoremediation*, 21(12), 1241-1253.
- Babayev, S. (1999). Geography Nakhchivan Autonomous Republic. Elm, Baku, 227.

- Bordbar, F., & Mirtadzadini, M. (2024). A morphological re-evaluation of the taxonomic status of Satureja L.(Lamiaceae, Nepetoideae, Mentheae) from flora of Iran. Adansonia, 46(7), 45-83. https://doi.org/10.5252/adansonia2024v46a7.
- Flora of Azerbaijan: In 8 volumes (1957), Vol.7, Baku, 648 p. p. 361-363,
- Grossheim, A. A. (1936). Analysis of the flora of the Caucasus: Proceedings of the Botanical Institute of Azerbaijan. *FAN USSR*, *1*.
- Ibadullayeva, S., Gasimov, H., Gahramanova, M., Zulfugarova, P., & Novruzova, L. (2015). Medico-ethnobotanical inventory (liver and gallbladder ducts illnesses) of Nakhchivan AR, Azerbaijan. International Journal of Sciences, 1(06), 80-88.
- Ibadullayeva, S. J., & Huseynova, I. M. (2021). An overview of the plant diversity of Azerbaijan. Biodiversity, Conservation and Sustainability in Asia: Volume 1: Prospects and Challenges in West Asia and Caucasus, 431-478.
- Ibragimov, A. S. (2005). Vegetation of the Nakhchivan Autonomous Republic and its national economic importance. Baku: Science, 236.
- Kolaylı, S., Asadov, E., Huseynova, A., Rahimova, S., & Kara, Y. (2024). Phenolic composition and antioxidant properties of black mulberry (Morus nigra L.) fruits and leaves. Journal of Wildlife and Biodiversity, 8(2), 355-364.
- Mursal, S., Sayyara, I., Hilal, G., & Zulfiyya, S. (2014). The flora and vegetation of Shahbuz State Nature Reserve. Nakhchivan: Ajami.
- Novruzov, E., Mustafaeva, L., Zeynalova, A., Musaeva, A., Bagirova, A., & Akhundova, R. (2021). Taxonomic composition and bioecological features of food plants of flora of the Central Part of Lesser Caucasus (within Azerbaijan). <u>http://dx.doi.org/10.30546/2664-5297.2021.1.26</u>.
- Portenier N.N. (2000) Methodological questions of identifying geographical elements of the Caucasus flora // Botanical Journal, No. 6, pp. 76-84
- Rakhimov, G., Shevnikov, M., Plahtiy, D., Nedilska, U., & Krachan, T. (2023). Life forms of plants of natural and anthropogenic landscapes.
- Raunkiaer, C. (1934). The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiær.
- Suleymanova Sh.T. (2021). Classification of vegetation types where species of the genus Satureja L. are widespread in the flora of the Nakhchivan Autonomous Republic. Scientific works of Azerbaijan National Academy of Sciences Nakhchivan Branch office. The Series of Natural and Technical Science, № 4, s. 127-133
- Suleymanova Sh.T. (2021). Comparative description of the phytochemical composition of specialties in the genealogy of Satureja L. in the floor of the Nakhchivan Autonomous Republic / I. International Apitherapy and Nature Congress, p. 260
- Suleymanova Sh.T. Seyidov M.M. (2020). Ontogenetic Structure of Some Cenopopulations of the Species Satureja macranta C.A.Mey (Lamiaceae Lindl) Distributed in the Territory of the Nakhchivan Autonomous Republic // Nakhchivan State University. Scientific works, № 3 (104), 28-31
- Suleymanova, S. (2024). Areas and Resources of the Satureja L. Genus in Nakhchivan (Azerbaijan). <u>https://doi.org/10.33619/2414-2948/108/03</u>
- Suleymanova, S. (2024). Comparative Examination of Phytochemical Composition of Satureja L. in the Flora of the Nakhchivan Autonomous Republic. <u>https://doi.org/10.33619/2414-2948/103</u>

- Talibov, T. H., & Ibrahimov, A. S. (2008). Taxonomic spectre of the flora of Nakhchivan Autonomous Republic. *Nakhchivan: Ajamy*, 364.
- Talibov, T., & Bayramova, S. (2025). Taxonomic Diversity of Euphrasia Species in Nakhchivan: a Botanical Overview.
- Ибрагимов, А. Ш. О., Набиева, Ф. Х. К., & Салаева, З. К. К. (2017). Горностепная растительность Нахчыванской автономной республики Азербайджана. Инновации в науке, (5 (66)), 9-13.
- Сулейманова, Ш. Т. (2024). Ареалы и ресурсы Satureja L. В Нахичевани (Азербайджан). Бюллетень науки и практики, 10(11), 28-36.