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Abstract 

The tree species known as the African oil bean (Pentaclethra macrophylla Benth) retains 

numerous applications. For rural residents, almost all of its traded elements represent a 

significant source of income. Numerous terrestrial habitats have reportedly experienced 

negative biological, temporal, and spatial effects concerning climate change lately. 

Understanding the out-turn of changing climate towards the geographic distribution of species 

could help predict their growth or decline and, if necessary, provide appropriate conservation 

measures. We examined whether climate change will affect the geographical distribution of 

this species throughout its native distributional area across West and Central Africa in light of 

the strong interest that this species holds for rural African residents. Under AfriClim RCP 8.5 

scenario 2070 conditions, the inquiry was carried out by applying the MaxEnt model. 

http://www.wildlife-biodiversity.com/
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According to the MaxEnt results, climate change shall hold a major footprint toward species' 

native spread. About 5% (5889 km2) of the nations across West and Central Africa are 

predicted to have stable species populations. These are mostly the regions located along the 

southern coasts of Guinea Bissau, Sierra Leone, Liberia, Cote d'Ivoire, Nigeria, Cameroon, and 

Gabon. The model threshold indicated a huge 95.29% (119135.9 km2) reduction in the species' 

appropriate habitat. The southern coasts of Senegal, Ghana, Togo, and the Benin Republic, 

along with the Democratic Republic of the Congo, are predicted to be unsuitable, as are the 

topmost northern portions associated with the Sahel regions of West and Central African 

countries. Additionally, it is expected that the entire Burkina Faso, Central African Republic, 

Democratic Republic of the Congo, and south-eastern Angola will no longer be appropriate for 

the species. It is necessary to build up the preservation of the species by raising and establishing 

it in the anticipated suitable areas/agroforestry plan to ensure its sustainable usage and 

practicable conservation. 

Keywords: Forecast, Tree species, MaxEnt model 

Introduction 

A growing number of articles have been written on the subject over current times because of 

the fear and uneasy feelings that global climate change has sparked in a variety of media 

technologies and academia (Nabout et al., 2011). At a global level and from one region to 

another, large, destructive fires, a prolonged period of abnormally hot weather, low rainfall 

causing a water shortage, outflow of water, and powerful spinning storms are all examples of 

the heating trend or temperature change that is occurring (IPCC, 2013). The effects mentioned 

above possibly will culminate in the deficit of path to adequate supplies of low-cost, nutrient-

rich food, the downswing or extinction of biological diversity, along with a loss to do with 

economic benefits (deliverable) supplied to people via ecosystems' ecological functions (Bentz 

et al., 2010).  

An imminence concerning climate change may cause different species to respond differently. 

For instance, species may relocate to new locations with better ecological conditions, persist to 

inhabit or subsist near the fringe or extremity of their territorial radius, or perhaps cease to exist 

altogether (IPCC, 2014; Abrahms et al., 2017). We must increase our understanding of species’ 

spatial distributions and the factors that influence their geographic patterns to mitigate or 

manage climate change's menace to biological diversity. The regional distributions of species 

in different sites or areas may be influenced by climatic and physical factors (Soberon & 

Peterson, 2005). When determining a species' global distribution at sizeable geographic 

gradation, weather patterns or conditions are thought to be more appropriate than biotic 

interactions (Pearson & Dawson, 2003). According to those above, the ecological niche model 

(ENM) offers the relationship between species occurrence locality as well as associated 
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ecological parameters that one may depict an ecological niche (climate preference) along with 

prospective latitudinal dispersal as to species (Peterson et al., 2011). These ecological niche 

and species distribution models arise universally applied within conservation biology along 

with ecology, branches of biology that deal with the geographic dispersal of flora together with 

fauna species (Pearson et al., 2007; Elith et al., 2011).  

The importance of predicting species distribution is increasing because of the outcome of 

global change towards local ecosystems. Considering guesstimating elimination possibility and 

calculating potential time ahead dangers deriving from situations like climate change, facts or 

information on a species' spatial and temporal distribution are essential (Pacifici et al., 2015). 

According to Peterson et al. (2011), Ganglo et al. (2017), Altamiranda-Saavedra et al. (2017), 

and Djotan et al. (2018), ENMs are acclimated to deduce the environmental needs of species, 

forecast topographical dispersal, determine locality for conservation, and predict consequences 

of global heating. MaxEnt is one of the most popular or widely used programs for ENMs and 

suitability predicting of habitat when compared to this type of data utilized per this inquiry, 

species presence-only data. According to Phillips et al. (2006), such modeling devices 

employing presence-only data have solely to do with this foremost operating rote amid such 

applying climatic modeling processes or approaches. It is also vigorous for minuscule or 

constrained populations (Pearson et al., 2007). By carefully analyzing this dispersal likelihood 

concerning upper limit unpredictability and adhering toward that restriction in that this 

predicated valuations concerning any factor below such evaluated dispersal ought to equal that 

factual midpoint, MaxEnt is an apparatus learning procedure that calculates species distribution 

over that survey quarter (Phillips et al., 2006). 

The African oil bean tree (Pentaclethra macrophylla Benth) can reach heights of 21 to 30 m 

and a width of more than 60 cm. It is primarily found in the Guinea savanna, tropical rain 

forests, and other shoreline (coastline) regions of West and Central Africa in the tropics (Keay, 

1989). There are no recognized differences in the taxonomic classification of the plant, which 

is related to the family Fabaceae and the subfamily Mimosoideae (Oboh, 2007).  According to 

Orwa et al. (2009), P. macrophylla is said to fix nitrogen and have spiritual qualities. Its 

application against bad spirits was described by Kone et al. in 2008. Mandeng (2009) provided 

details on the laxative properties of roots and how to cure dysentery. Up to 30–36% of the oil 

in the seed is oil. Candle and soap production has occurred in this location (Ehiagbonare & 

Onyibe, 2008). Oboh (2007) noted the use of mature fruits of the tree as a cure for either 

anthropoid fauna infections or a decoction from the bark as an abortifacient in Nigeria and 

Cameroon. He also noted the consumption of boiled and roasted seeds in several households 
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in a muggy forest belt as in Africa. To treat gonorrhea, lactogenicity, infertility, diarrhea, 

wounds, itching, and convulsions, distillates about leaves, barks, pods, and seeds, together with 

seed pulp, have been reported to have anti-inflammatory and pain-reliever properties (ICRAF, 

2004, Zapfack et al., 1999; NFT, 1995; Abbiw, 1990).  Its common name, "oil bean tree," 

comes from Gill (1992), who described vegetable oil production from its seed. When dried, the 

empty fruit pods are utilized as cooking fuel. In Ghana and Nigeria, the wood is ideally suited 

for making bowls, charcoal, and other household products (Abbiw, 1990). A colorful substance 

called the dye is created in Ghana using the ashes left over from burning pods (Abbiw, 1990). 

According to Enujiugha and Agbede (2000), it contains the twenty essential proteins (organic 

compounds or amino acids), which account for over 10% of the oil's carboxylic acids. 

According to Enujiugha and Akanbi (2005), the seeds have a carbohydrate content of 19.16 

0.76% dry weight and an oil content of 53.98 0.99%. Its seeds are cooked, refined, as well as 

effervesce to ugba in the south-eastern areas of Nigeria, where they are used to make soups, 

regional salads, and sausages that may be consumed with a variety of conventional diets 

(Enujiugha, 2003). It is in high demand for both domestic consumption and international trade 

due to its excellent vitamin and mineral content. It is milled into flour and used to increase the 

concentration of a crucial micronutrient in food and confections due to its mildly acidic 

composition. Cooking, making candles, and making soap all use the edible oil from its seed 

(Okafor & Fernandez, 1987). In addition to making chaplets and beads worn around the neck, 

seed carapaces are sometimes used to decorate (ICRAF, 2004; NFT, 1995).  

P. macrophylla is categorized as Least Concern on the IUCN Red List (IUCN, 2020). The 

species' assets are still protected or obtained from the wild despite the species' considerable 

usefulness and socioeconomic characteristics. Several agroforestry and conservation initiatives 

have not considered the species in Africa. Overuse, deforestation, various anthropological 

activities, and climate change threaten the species. Our inquiry projected the likely outcome 

concerning climate change on the natural distributional range for P. macrophylla under present-

day along with time ahead circumstances employing the results as to the MaxEnt model 

projected under RCP 8.5 2070 framework. This was done in light of the colossal consumption 

and the commercial worth of the tree species to the populations in Africa, which are in a state 

of unmanageable usage, along with circumstances of changing climate. Our inquiry shall aid 

with regulating and preserving this earth's natural resources for present-day and future 

generations throughout its natural range in West and Central Africa.  

Material and methods  
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Study data on species and occurrence 

From Senegal in West Africa to Angola in Central Africa and down to Sao Tome & Principe, 

Pentaclethra macrophylla Benth can be found throughout Sub-Saharan Africa. This 

multipurpose tree can only be found in West and Central Africa's humid or wet regions and 

some of their dry or semi-hazy regions. Although it is primarily found in rainforests, 

individuals can be found elsewhere in high forest environments. It is frequently seen as a little 

tree with an untidy habit and a broad crown on farms and roadsides, and it can also be found at 

the edges of mildly wet slopes and adjacent to streams. Due to its deciduous wood, it has 

typically been conserved in these places and is now an heirloom. It is uncommon in uplands 

and mountainous areas, and it thrives in climates with appropriate precipitation of 1000–2000 

mm and a yearly periodic temperature of at least 18°C (Ladipo et al., 1993). Naturally, the 

distribution of P. macrophylla suggests that these acidic medium soils are where it is most 

common (Okafor & Fernandez, 1987). The species is resistant to soil saturation with water, as 

in southern Nigeria's coastal regions, Cameroon and Togo. Our study reserved a definitive 

detail of 1059 geographic coordinates to execute MaxEnt (Phillips et al., 2006). This data was 

cleaned with QGIS (2.18.1) to remove data without geographic coordinates and records outside 

our study area (Phillips et al., 2006). Figure 1 shows the location of the species that occurred 

in the area of inquiry. It is worth noting that certain of our study locations in the study area had 

more P. macrophylla occurrence points than other locations. Sample bias occurs when some 

regions of the area under research are surveyed more widely than others, which is a common 

example of a basic limitation on the distribution of a representative sample alone (Philips et 

al., 2009). With the aim of this, we envisaged that the species may not have been sampled to 

the same extent in our study area, where it thrives. As a result, we adopted the method of Elith 

et al. (2011) and Ganglo et al. (2017) by scoring deviation points to depict sampling efforts in 

the study area. Those above made available bias occurrence points for "MaxEnt model" 

(Ganglo et al., 2017). 
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Figure 1. Pentaclethra macrophylla Benth occurrence sites across West and Central Africa (GBIF 

Occurrence download https://doi.org/10.15468/dl.kahrZs (GBIF.org 9th October, 2020); and b) P. 

macrophylla are used for modeling. 

 

 Fitting/calibration of MaxEnt  

To execute our model’s current distribution, we downloaded fifteen essential bio-climatic 

variables (BIO 1 to BIO 7 and BIO 10 to 17) which are relevant to tree natural environment 

within Africa out of: https://www.world clim.org/bioclim (Hijmans et al., 2005). These traits 

were derived from once-a-month "temperature and precipitation" records for a portion in 

connection with 1950–2000; because they occur tangentially related to the growth, maturity, 

and dispersal of species, the variables continue to be widely utilized over the evaluation 

concerning species dispersal or geographical spread (Elith et al., 2006; Warren et al., 2013).  

To determine the chance of this species occurring within the inquiry area, the MaxEnt model 

uses stochastically acquired background data (Phillips et al., 2006). The objective of the 

background data selection arises that one may distinguish that habitat features impacting spatial 

dispersion have to do with occurrence inputs (Philips et al., 2009). A metric like this crops up 

essential toward presence-only records as it lessens sample predilection together and elevates 

the accuracy of model predictions (Philips et al., 2009). The MaxEnt model's approach is 

somewhat constrained because true-absence data are necessary to determine with accuracy that 

these species are distinctly possible to exist within a particular quarter of focus (Pearce & 

Boyce, 2006; Soberon & Nakamura, 2009). Other algorithmic programs that have been 

recognized to have less than desirable forecasting capabilities are the Genetic Algorithm for 

1a 1b 



226 | Journal of Wildlife and Biodiversity 8(4): 220-246 (2024) 

 

Rule-Set Prediction (GARP), Generalized Linear Models (GLM), and Boosted Regression 

Tree (BRT) (Pearson et al., 2007). As a result, MaxEnt is also applicable in survey purpose 

designed to find new locality where species are dispersing (Pearson et al., 2007; Elith & 

Graham, 2009). MaxEnt consistently emerges as having forecasted a significant section of 

species presence, predicting the relatedness of species to habitat plot prediction and 

extrapolating predictions beyond the training data. Running the MaxEnt model requires 

adjusting the climatic variables from the World Climate database to the locality of interest 

because they are global in scope. Such calibration will offer pinpoint climatic data for the 

investigated locality (Philips et al., 2006). To do this, we used QGIS to calibrate environmental 

layers to Africa before processing the environmental data for modeling (Philips et al., 2006). 

The climatic variables (BIO1 - 7; 10 - 17) were translated as Raster files, and afterward, the 

occurrence data was clipped employing predesignated number 1 as regularization multiplier or 

beta value; they were polygonized, categorized, and converted into ASCII setup applying 

QGIS. Following this, appropriate climatic parameters were chosen based on the variables' 

percentage contributions and jackknife testing. We monitored the ambient factors that had a 

notable impact on the MaxEnt model while it was being trained. The system assigns the 

increase exponentially in gain on the climatic factor after that the species depends, modifying 

or restoring such accompanied by percentage flanking conclusion concerning the training 

performance or functioning (Philips et al., 2006).  

All footmarks for the MaxEnt program increase the model's gain alongside substituting the 

multiplier concerning a unique feature. Phillips and Dudik's (2008) suggested framework that 

became proven to lay out robust or wholesome results was applied during this inquiry to 

evaluate this specificity. The numeral of synchronizations was adjusted to 10, while the 

maximum number of iterations was set at 1000. Each residual replacements are set to default. 

The perspectives of alteration or adaptation during that measure concerning fluctuation in 

energy within the atmosphere caused via anthropoid interference in connection with climate 

change, measured over watts/meter2, are the foundation for the models simulating climate 

change (IPCC, 2013). The 'Representative Concentration Pathways' (RCPs), this novel 

sequence about horizons exploited within the IPCC's Fifth Assessment Report (ARS), was 

applied to the cutting-edge climate programs (models) created via a 'World Climate Research 

Program's Coupled Model Inter Comparison Project Phase 5' (CMIP5). This choice concerning 

emission horizons significantly impacts the intensity of the expected climate changes (IPCC, 

2013). Within CMIP5, four RCP time-frames are utilized. The highest measure or stasis 

concerning contemporary era (21st century) radiative forcing (RF) obtained by this feed-in 
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model is used to identify and define them (IPCC, 2013). This RCPS consists of a lower limit 

RCP scope, which in 2100 is equivalent to a "RF of 2.6 W/m2," two intermediate RCP horizons, 

which are comparable to a "RF of 4.5" and a "RF of 6 W/m2," respectively, and the highest 

RCP horizon, which in 2100 is parallel to a "RF of 8.5 W/m2." Discharges may need to drop 

significantly or decline across all of these horizons, focusing on arriving at a status of "2.5 

W/m2" towards that edge in connection with the twenty-first century. As attested by van Vuuren 

et al. (2011), the progressive or cumulative emissions consumption needed to reach this goal 

will be almost 70% more than the baseline drift this century. This will require significant efforts 

and collaboration from every country to increase energy productivity and switch from the 

unstoppable use of petroleum to the sustainable or inexhaustible energy source known as 

nuclear energy (van Vuuren et al., 2011). Little has been done to reach this aim nationally and 

worldwide, and nations that emit significant amounts of greenhouse gases disagree on the 

trajectory or policies that should be followed to reduce emissions. As a result, it is unclear or 

debatable if the RCP 2.6 horizon will achieve its objective. Additionally, "RCP 4.5" is a middle 

ground where certain international and governmental efforts to lower its levels are predicted to 

lower "RF in 4.5 W/m2" by 2100, which is also less plausible.  

From those above, we selected an "RCP 8.5" scenario; the aforementioned is the mass uttermost 

scenario in which extenuation endeavors by administrative bureaucrats and the general public 

are hypothesized to be low to anticipate the distribution of P. macrophylla. The model was run 

50 times via bootstrap, albeit with a corresponding run categorization, using all data points—

including test data—to identify the most significant variables. The training data is selected 

randomly by adding up or interchanging using the occurrence points in the "bootstrapping" 

synchronization technique, where the absolute numeral of presence points and the integer of 

samples match (Phillips, 2010). This option would make up for the sampling bias in the study 

area. 

Model assessment  

This model comes about appraised in this study utilizing an "area under the receiver operating 

characteristic (ROC) curve" (Peterson et al., 2008) along with an "area under curve (AUC)" 

(Elith et al., 2006), percentage contributing variable table, as well as Regularized training gain 

(Jackknife plot), was learned thoroughly to confirm the greatest noteworthy devoted feature to 

this model (Phillips & Dudik, 2008). The regularized training gain guides model fitting. Each 

proportion, integer, or gradation of the interlude either of any dyad if not extra randomly 

features which evince tally inequality over arbitrarily chosen framework plots and concurrent 

scattering of predictor higher than studied species plots is known as the regularized training 
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gain (Elith et al., 2011). Therefore, in a second training gain (RTG 1) suggests a specified 

habitat insufficiency, whilst an expansive regularization training gain (RTG 1) shows the 

attraction considering a narrow capacity concerning ecological circumstances contrary to 

sizeable territory. Therefore, a considerable rise in 1 for a certain factor or parameter indicates 

a certain factor has a noteworthy forecasting value. The main benefit is the above mentioned 

factors are connected to life processes and are desired indicators of where species may develop 

(Elith et al., 2006). According to Elith et al. (2006), AUC represents the credibility of a given 

species' variable chosen existence location, which will turn out to be deemed to be extra suited 

relative to its unpredictable preferred nonappearance location.  

When AUC is within reach of 1 (AUC 0.75), a model exists thought toward having exceptional 

performance (Elith et al., 2006). True skills statistics (TSS) were also utilized to evaluate the 

accomplishment of this model (Allouche et al., 2006; Elith et al., 2006). That adeptness of a 

model toward accurately or impeccably recognizing that error-free existence along with 

nonappearance is known as TSS. In contrast, a model with a TSS of about 1 (TSS 0.5) has great 

atypical and calculable robustness (Allouche et al., 2006). A model with a TSS of 0 specifies 

an arbitrary forecast. Exploiting the TSS Excel worksheet, we used the MaxEnt model for the 

species to get a TSS value considering ten harmonization runs. 

Model's projection   

Considering projection, we used Future_2070_rcp85 to estimate the MaxEnt model for P. 

macrophylla in the climate framework instead of the year 2070 (Phillips et al., 2006). For 

Future_2070_rcp85_bis prediction, we selected suitable climate variables from the Paired 

Model Inter Comparison database found at (https://webfiles.york.ac.uk/KITE/AfriClim/Geo 

TIFF_150s/ - Available from the Project Phase 5 (CMIP5) of the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change (IPCC) for the years 2070; middle of the 

2061–2080 cycle (Platts et al., 2014). Within that process of quadrivium greenhouse gas 

congregation surroundings or environment known as “Representative Concentration 

Pathway’s” (RCP’s), 15 General Concentration Models (GCM) predicted these results. RCP 

remains a posterity arrangement that has been preferred by the Special Report on Emissions 

Scenarios (SRES) because the group permits higher conformism together with lower 

costs/expenditures throughout the modeling process by van Vuuren et al. (2011). Additionally, 

RCP calls for cordial collaborations in climate and unified evaluation modeling and collision, 

adaptation, and vulnerability studies (van Vuuren & Carter, 2014). According to Moss et al. 

(2010), this RCP framework was developed to examine various scenarios involving 

https://webfiles.york.ac.uk/KITE/AfriClim/
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demography, the economy and society, human use of land, and technology. Because only 15 

projection environmental layers (BIO 1 - BIO 7 and BIO 10 - BIO 17) are available in the 

AfriClim database, we depended upon the World Climate database (WorldClim) to pick 

specific related environmental factors for this species' existing distribution. Because theirs, to 

a greater extent, firmly matched with the biome reality in Africa relative to the overall tally of 

unanimity resolutions in the finite image of extensive training models, the AfriClim variations 

turned out to be given preference considering forecast over the WorldClim alternative (Platts 

et al., 2014). In addition, mass rotation models do not replicate rainfall at the regional level due 

to the unpredictability of estimates (IPCC, 2013), which is accomplished via this AfriClim 

component resulting from two regional rotation models. Mass rotation models have a restricted 

guarantee of replicating external climate on a regional scale instead of the broad-gauged. The 

model was constrained to a resolution that could depict regional environmental variations or 

fluctuations and was useful or practicable for regional ecological applications using various 

observational criteria (Platts et al., 2014).  

Model threshold 

Reclassification, transformation, and polygonization of raster to vector connected output layer 

were executed using QGIS 2.18.1 to threshold the MaxEnt model. We also estimated the 

species span corresponding alongside resolution thresholds for the present and subsequent 

(future) weather conditions in the 2070 framework wherein locality/dimensions regarding 

dispersal modifications. However, "minimum training presence" was the only choice threshold 

we employed. Since P. macrophylla has habitual or traditional occurrence areas that remain 

constant and fixed, together with overall an environmentally safe logical substitute, the orbit 

constitutes locations wherein biological parameters are the same way favorable or preferable 

to those of those sites (Pearson et al., 2007). Maximum training presence in comperes is to a 

lesser degree reliable and almost all distinctly possible substitute existence. We categorized the 

MaxEnt ASCII file output into three categories based on the minimum training presence 

threshold: suitable (0.92-1), (0.77-0.8), and (0.48-0.69), as well as unsuitable (0-0.3.8) of 

species presence.  

Results 

Model validation for MaxEnt  

With ten bootstrapping synchronizations, the findings for MaxEnt model evaluations of P. 

macrophylla indicate/define validity along with AUC = 0.907/TSS = 0.85 (Figures 2 and 3), 
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respectively. Because of this, this model outperformed arbitrary ones in terms of performance, 

efficiency, and positive predictive ability. 

 

Figure 2.  MaxEnt model AUC evaluation for P. macrophylla 

 

 

 

 

 

 

 

 

Figure 3. True skill statistics (TSS) of the MaxEnt model for P. macrophylla  

 

P. macrophylla's geographic range in West and Central Africa is influenced by climate 

factors 

In this study, the tables of variable ratio input along with an order of significance (Table 1) and 

Jackknife plot (Fig. 4). This action or standard entirely depends on the MaxEnt model's final 
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series, regardless of how it was accomplished. By arbitrarily rearranging the values concerning 

that individual climatic variable within that training point's "presence and background," that 

variable's role is modified. The decline within training AUC is then calculated. The significant 

reduction designates how heavily the model depends on a weather factor. Weather factors are 

interposed to acquire a percent input ratio) singled out five weather factors concerning holding 

that substantial footprint regarding the native distribution area of P. macrophylla in West and 

Central Africa: "BIO 6 - "minimum temperature of coldest month," "BIO 12 - annual 

precipitation," "BIO 13 - precipitation of the wettest month," BIO 16 -  Precipitation of wettest 

quarter along with "BIO 17 - precipitation of driest quarter." The variable input ratio for P. 

macrophylla (Table 1) confirmed the variable influence chart (Figure 4), asserting BIO 16 as 

the maximum symbolic explicate otherwise determining weather factor between the five 

weather factors extracted inside this model. When eliminated, BIO 17 significantly lessens gain 

and was a most insightful variable in the model. 

 

Figure 4. Maximum symbolic determining weather factors to P.  macrophylla distribution  
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Table 1. Weather factors average input/sequence of significance  

Weather factors Average input (%)  Sequence of significance 

BIO 16 33.8 32.5 

BIO 12 28.2 10.8 

BIO 13 26.5 16.2 

BIO 6  20.3 12.8 

BIO 17 17.4 43.6 

 

Figures 5i, ii, iii, iv, and v, respectively, show the reaction charts of the weather mentioned 

above factors toward predicting fitness or credibility prediction regarding P. macrophylla. The 

apparent array in BIO 6 (Figure 5i) shows how sensitive a species is to variations in the 

minimum temperature during the coldest months of the year. Logistic forecasts reveal a minor 

gain in response output arising out of the minimal temperature from 0°C toward 18°C, 

following this, the rapid upsurge and optimization at 24°C is congruous for this species 

ecosphere or life assemblage. This low-point temperature toleration borderline about the 

species occurs, therefore allying 18 and 24°C inside these coldest months, according to the 

reaction curve of BIO 6. How different species respond to BIO 12 (Figure 5ii) also reflects 

how they interact with their ecological communities. For example, 1000 mm and above of 

precipitation are considered to be optimal or effectual levels towards the forecast peculiar to a 

species' high-point fitness if not productiveness, regardless of how, in really rainy seasons 

(rainfall of more than 3000 mm annually), the reaction's yield drops dramatically (Figure 5ii). 

The species' reaction to BIO 13 (Fig. 5) demonstrates outstanding response production with 

rising precipitation from 0 to 800 mm, followed by a dramatic reduction after the suitability 

threshold of about 800 mm. Figures 5v and 5v, representing the species' reaction curve for BIO 

16 and 17, demonstrate exceptional reaction output originating at 0 toward 1000 mm and 0 

toward 250 mm, followed by a rapid decline after the trapping threshold, respectively. The 

outcome of the P. macrophylla reaction curves demonstrates that the species, as mentioned 

above, is susceptible to wet and dry spells in its natural or developed habitat in West and Central 

Africa.  
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Figure 5. Responses chart of each weather factor specifically impacting growth of P. macrophylla 

  

Geographic spread of P. macrophylla at present and the future  

Figure 6a shows the present-day geographic spread of P. macrophylla within the study belt of 

West along with Central Africa. The outcome regarding this model indicated that the suitability 

forecast is more accurate in southern geographic regions, mainly in coastal regions of West and 

Central African nations. However, it was anticipated that there would be suitability gaps 

(locations with low suitability) along the whole coastline. The northern regions of West and 

Central Africa raise the subject of adverse predictions, which may arise due to this region's 

primarily dry Sahel environment, which is inconsistent with the species' geographic range or 

ecological needs. Figure 6b, using AfriClim RCP 8.5, shows the predicted (future) geographic 

distributions of P. macrophylla for 2070 within our study area. We noticed that most of the 

nations in West and Central Africa had a steadily declining suitability projection compared to 

the existing distribution (Figure 6a). Nevertheless, despite the species' projected decline in 

geographic distribution, the southern zones along the seashore of nations within West and 

i 

ii 
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Central Africa persist and are predicted to continue to be suitable for P. macrophylla 

distribution. This is consistent with the suitability forecast across our study area.    

Impact of climate change on P. macrophylla's regional distribution 

We found that the predicted stable region of P. macrophylla distribution under AfriClim RCP 

2070 will be roughly 5% (5889 km2) of West and Central African countries at the ‘minimum 

training presence’ threshold. Most predicted favorable locations for the species' distribution are 

restricted to the southern coasts of Guinea-Bissau, Sierra Leone, Liberia, Cote d'Ivoire, Nigeria, 

Cameroon, and Gabon. The model threshold indicated a huge 95.29% (119135.9 km2) 

reduction in the species' appropriate habitat. The southern coasts of Senegal, Ghana, Togo, the 

Benin Republic, and the Democratic Republic of the Congo are predicted to be unfavorable for 

P. macrophylla, also the uppermost northern regions linking with the Sahel parts of West and 

Central African countries. Additionally, it is predicted that the entire Central African Republic, 

Democratic Republic of the Congo, and south-eastern Angola will not be appropriate for the 

species. 

Table 2. Climate change impact on the geographic spread of P. macrophylla at the minimum training 

presence threshold 

Suitability prediction  AfriClim (RCP 8.5) scenario 

Range (km2) Ratio (%) 

Suitable (0.92-1), (0.77-

0.89) and (0.48-0.69)  

5889 4.71 

Unsuitable (0-0.3.8)  119135.9 95.29 

Total 125024.9 100 
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Figure 6. (a) Pentaclethra macrophylla's current geographic distribution in West and Central Africa, 

(b) the projected distribution under an AfriClim RCP 8.5 2070 framework and (c) the impact pertaining 

to climate change at the minimum training presence threshold are shown 

Discussion 

Model validation for MaxEnt  

Recognizing species with a high likelihood of having no live members and identifying specific 

determinant elements to reverse the decline in biodiversity is extremely important or necessary, 

taking into account changes in the global climate (Darrah et al., 2017). For determining each 

species' terrestrial radius and its realized niche, facts or data operating change in the direction 

of a particular species' ecological niche are paramount (Breiner et al., 2017). According to our 

investigation's AUC and TSS values, the MaxEnt model's application demonstrated great 

performance and strong predictive power. The wide region examined in our study may have 

contributed to the models' robustness or strong ability to predict. Similar results of the MaxEnt 

model's robust, exceptional, and predictive ability have been reported for Milicia excelsa in 

Benin, West Africa (Kakpo et al., 2019), Juniperus excelsa in Central/Eastern Alborz 

Mountains, Iran (Fatemi et al., 2018), Lonchocarpus sericeus together with Anogeissus 

leiocarpa in Benin, West Africa (Gbetoho et al., 2017), and Additionally, environmental 

factors including temperature and precipitation were taken into account in the current study. 

When modeling is conducted across vast areas, temperature, and precipitation, direct input data 

are additionally well organized, according to Guisan and Zimmermann (2000). Contrarily, 
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incidental input-data that are not only poorly organized but also more likely to cause model 

errors should be avoided.  

Geographic spread of P. macrophylla within West along with Central Africa is influenced 

by climatic factors. 

Multiplex web of biologic along with azoic variables or situations governs the dispersal or 

spread of a plant species in the physical features of a region. These variables include local 

weather patterns, soil characteristics, competition between species, artificial interruptions, and 

restrictions on dispersal (Blach-Overgaad et al., 2010). Dispersal constraints and social 

interactions may also change the distribution of the species, but weather factors arise as one 

preeminent indication of their way of life (Soberón & Peterson, 2005). A thorough grasp of 

each species' biological circumstances is essential for assessing the broad geographic range in 

which it may cling to life together with inherent prospective reaction toward change in climate 

on account of conservancy and management plans (Bowe & Haq, 2010). Originating at Senegal 

eastward towards South-eastern Sudan, southward to Angola, along with the island or islet of 

Sao Tome and Principe, P. macrophylla can be found in the forests about West along with 

Central Africa (Oboh, 2007). According to Orwa et al. (2009), this species is found within 

primary and secondary forests as well as coastal savannas, typically close to streams and rivers. 

Even though growth is possible near greater levitations where there is sufficient rainfall and 

temperatures at no time drop below 18 °C, it is most abundant at elevations up to 500 m. 

According to Emebiri et al. (2012), it requires 1000–1500/2000-2700 millimeters of annual 

rainfall and an annual average temperature of roughly 25°C. Our research identified five 

weather factors as being particularly important to the attitudinal distribution regarding P. 

macrophylla in West and Central Africa: BIO 6, 12, 13, 16, and 17; minimum temperature of 

coldest month, annual precipitation, precipitation of wettest month, precipitation of wettest 

quarter together with Precipitation of driest quarter), respectively. Therefore, in terms of 

species status, our findings are trustworthy. Encompassed by characteristics that hold the 

biggest influence operating the model toward forecasting the attitudinal dispersal regarding this 

species were BIO 12 along with the variations above, BIO 13, 14, 16, and 17. A species' ability 

to expand or disperse depends largely on the weather (Vayreda et al., 2013), especially 

concerning water-related factors (Svenning & Skov, 2006).  The year-round variation in 

rainfall is measured by BIO 12 (O'Donnell & Ignizio, 2012).  The model determined that a 

yearly rainfall range characterized by 1000–2700 mm is appropriate for P. macrophylla's 

spatial distribution regarding the study area and also compatible with this life assemblage 
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regarding this plant. When compared to global scales, water has several uses in plants and is 

known to positively impact species distribution patterns (Willis & Whittaker, 2002). In addition 

to serving like the temperature thermostat in the course of that activity about moisture 

exhalation by a hydathode together with acting like a grist in the activity of photosynthesis, 

that is one indispensable procedure foundational for total growth or existence, it has the ability 

toward dissolving more material to macro-nutrients including a web of plant food synthesize 

within that plant (Ferguson, 1959). A lack of moisture and an abundance of moisture can cause 

problems for plants (Haferkamp, 1987). The presence of moisture within the surroundings in 

regard to plants is unquestionably of the essence when taking into account those significant 

tasks. Because the species is widespread in primary and secondary forests as well as guinea 

savanna, its reaction to annual fluctuations during precipitation (BI 13, BIO 14, 16 and 17) 

within the area studied additionally implies this species lives susceptible tolerant with dry as 

well as wet periods inside this customary habitat. Although a fluctuation within the lowest 

temperature as to the coldest month (BIO 6) was shown to exert an influence on the regional 

dispersal regarding this species significantly, the every year mean temperature (BIO 1) arose 

by no means among this mostly significant supporters toward this distribution model of P. 

macrophylla. It is important to emphasize that any plant owns a distinctly fixed temperature 

scale with a minimal, high, and ideal temperature range that is overseen by the terrain 

temperature (O'Donnell & Ignizio, 2012; Hatfield & Prueger, 2015). That minimum 

temperature of the coldest month (BIO 6) defines the coldest month as having a low average 

temperature of 21.7°C. According to the logistic prediction of the response curve, P. 

macrophylla's minimum temperature increased from 0°C to 18–25°C. According to the 

response curve for the coldest month's minimum temperature (BIO 6), the minimum 

temperature appropriate for the species' geographic distribution is 25°C, which is also in line 

with the ecology of the species. Hatfield and Prueger (2015) claim that while temperature 

advances toward each species-ideal volume, vegetative growth expands and multiplies, along 

with a substantial aggregate concerning plant species; vegetative development typically holds 

a higher optimum estimate than reproductive growth. In consonance with the findings as to 

their inquiry, this arises credible significant temperature dissimilarity, such as a sublime rate 

about BIO 6, may affect this P. macrophylla's ideal temperature as a consequence later on the 

impact this dispersal and growth of P. macrophylla occurrence during vegetative together with 

reproductive phases. Thus, it could be concluded that the greatest estimate of BIO 6 transcends 

the temperature at which P. macrophylla regional distribution may be negatively impacted, to 

be specific., 25°C.  In this investigation, this factor BIO 6 determined the species' light/heat 
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accessibility and changeability, while BIO 12, 13, 16 and 17 determined P. macrophylla's water 

availability and variability, respectively. This models might perhaps continue generalized 

towards locations outside the regions under investigation and can outline directed toward goal 

pertaining to species regulation within related localities because the factors which govern this 

geographical distribution concerning this species arise fundamental primary set of conditions 

(Elith et al., 2011).   

Effect of climate change on P. macrophylla's geographic range in West and Central Africa 

Only environmental influences during the construction of our MaxEnt model were studied in 

this study. Therefore, the prediction of species distribution is somewhat constrained and 

ambiguous (Abrahams, 2017). Without a doubt, niche models predict a habitat compatible with 

the species' prospective site (Soberon & Peterson, 2005). Inconstant certainties or inconstant 

uncertainties within a species' appearance in that predicted geographic area may result (Thuiller 

et al., 2005). Inconstant uncertainties develop while factors apart from weather affect a species' 

dispersal and prevent it from developing consistently inside that appropriate locality, belt, or 

zone undergoing study (Thuiller et al., 2005; Blach-Overgaard, 2010). Inconstant uncertainties, 

contrariwise, appear when insufficient information about a habitat representative or poor 

representative selection techniques averts error-free forecast or precise species existence. The 

ability of species to disseminate as well as interconnect among one another apropos of 

geographic localities where a model weather is creating its essential niche may be connected 

to supplementary influences that arise neither connected nor equated to weather (Soberon & 

Peterson, 2005). These additional factors may also affect the dissemination of this species.  

That all-inclusive indispensable criterion for forecasting a dispersal of species at local, national, 

intercontinental, and global scales is climate, which is largely indisputable or unquestionable 

(Wills & Whittaker, 2002; Thuiller et al., 2005; Blach-Overgaard et al., 2010). To project 

modifications within species dispersion ascribed to global changes, adopting climate models 

alongside a specific algorithmic (MaxEnt) has cropped up expansively demonstrated (Svenning 

& Skov, 2006). The critical core space is modeled when climate circumstances or factors are 

present, with each projected result in geographical regions fitted towards the likelihood 

dispersion (Pearson et al., 2007). Hutchison (1957) defined a fundamental niche as a full range 

of biological circumstances where a species can coexist and procreate without migrating. The 

model used in our study showed that the species' present geographic distribution is the southern 

and coastal regions of the countries in the West along with Central Africa (Figure 6a). 

According to our study, the species' current dispersion may be due to little to no variation in 
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climatic factors like rainfall and temperature, which are significant environmental factors 

influencing natural environments and geographical dispersion of species (Anderson et al., 

2006).  

Among-st related inquiry utilizing MaxEnt, Gbetoho et al. (2017) as well as Kakpo et al. (2019) 

assert 83 along with 98.9% of Benin were current natural environments for Lonchocarpus 

sericeus together with Anogeissus leiocarpa, respectively, and that 47.1% of Benin was 

currently suitable for Milicia excelsa. To assess the danger attributed to elimination along with 

forecast perspective over time threats arising out of situations like climate change, it’s pivotal 

to fathom the geography together with existing dispersal as to a species (Pacifici et al., 2015). 

Conversely, towards this species' present-day geographical dispersion, the futurity forecast 

(Figure 6b) revealed that, within this RCP 8.5 2070 framework, this species' appropriate natural 

environment would outstandingly decrease across the southern coastline countries of West and 

Central Africa. Additionally, there occurred a considerable decline within the habitat that was 

fitting concerning the species at the "threshold of minimum training presence" of 96.29% 

(figure 6c). Only about 5% of the territories under investigation will remain a natural habitat 

instead of the spatial distribution of this species. Solely, ‘minimum training presence' (a 

paramount fixed and ecologically possible choice) instead of a ‘maximum training presence' (a 

lesser fixed and more hypothetically existence choice) was chosen based on thresholds 

decision. We understand that specialized modeling that one may assay an impact of 

modification in weather forecast regarding species dispersions depends interminably on the 

atmospheric or ecological circumstances contemplated during model construction along with 

the lowest levels utilized towards explaining that outputs, as indicated by Pearson et al. (2007). 

Therefore, it is important to choose thresholds carefully. The largest stable alternative, 

however, stems from the idea that those above (minimum training presence threshold) is 

preferable for the reason that it embody a straightforward ecological clarification toward 

generating quarters that are at least as appropriate as those within where the species have 

existed or inhabited (Pearson et al., 2007). On the other hand, the maximal training presence 

threshold is a more expansive approach that is theoretically direct but less reliable. For instance, 

Dialium guineense Willd's ecological niche was modeled by Ganglo et al. in 2017. Minimum 

training presence (70% habitat suitability was observed) and maximum training presence (a 

decline in habitat suitability to 17% was recorded) were both used in West Africa at 2055 

scenario under RCP 8.5. However, they showed that this last criterion was less factual or 

exploratory and hence less able to categorize most of the potential places of the species' range. 

They calculated that at the minimal threshold, their investigations revealed the highest 
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prospective towards their species' geographic dispersion over time (future) because MaxEnt is 

known to have enhanced predicting power (Pearson et al., 2007).  

As we thought about the effects of changing climate on other species, we noticed a certain 

Lantana camara was predicted by Fandohan et al. (2015) to cover 65% attributed to the nature 

preserve (Pendjari) along with about 6% of W Regional Park of Benin, consecutively. This 

forecast held over time (future) within RCP 8.5 at the adjustable training presence maximal 

threshold. Out of the first, this persists that this minimal threshold arises moreover dependable 

including actual besides the maximal threshold. Changes in these values of climate parameters 

can be used to account for the discrepancy between current forecasts and projections for the 

future. According to AfriClim's Representative Concentration Pathway (Platts et al., 2015), the 

climate tends to start en route towards getting warmer and less humid (drier) in West and 

Central Africa, which will result in increased muggy climatic modifications and a potential 

dispersion of this species by the middle of the twenty-first century. Additionally, the decline in 

suitable habitats may result from historical and urgent changes expected for bioclimatic 

variables, primarily precipitation and temperature. For instance, P. macrophylla has evolved to 

tolerate temperatures in the middle of 25 along with 30°C, precipitation in the middle of 1500, 

and 2700 mm annually (Orwa et al., 2009). The change from the current state of these relevant 

climate variables will unquestionably modify or impact that dispersion concerning species.  

As Busby et al. (2010) indicated, shifting climatic components like temperature and 

precipitation may well retain an effect on biodiversity along with the geographic distribution 

of suitable natural environments. According to projections for the future, our study discovered 

that protected areas will be important for maintaining P. macrophylla in countries throughout 

West and Central Africa. Forecasts for the species' habitat suggested that protected sites, 

including the Takamanda Forest Reserve in Cameroon, Koroup National Park, and Cross River 

National Park in Nigeria, were suitable. Our findings support Doxa et al.'s (2017) observation 

that protected or guarded territories are a key strategy considering on-site biodiversity 

management. 

Conclusion  

Within West and Central Africa, where P. macrophylla has its natural distribution range, our 

study predicted some consequences or outcomes concerning climate change.  The geographic 

dispersion of this species occurs controlled by five environmental variables (BIO 6, 12, 15, 16, 

and 17): a minimum temperature of the coldest month, annual precipitation, precipitation of 

the wettest month, precipitation of wettest quarter together with precipitation of driest quarter), 
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which is congruous alongside that bioecology concerning this species in it’s natural 

distributional range. According to the habitat suitability forecasts, this species is currently 

primarily restricted to the southern coastal regions, with minor gaps of occurrence throughout 

its natural geographical range. Given that the suitability estimates will be greatly reduced or 

eliminated in most nations in West and Central Africa under the RCP 8.5 2070 scenario, climate 

change is bound to retain a footprint on the geographical range of this species. Our research 

results provide a scientifically sound rationale for effective strategies and implementing this 

species' conservation intentions, which are anticipated in the next quarters.    
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