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Abstract 
Predicting and mapping appropriate habitats for endangered and threatened species is crucial for 

monitoring and restoring their dwindling populations in their natural surroundings. Additionally, 

it aids in selecting suitable conservation sites and effectively managing their habitats. An ideal 

approach for habitat suitability modeling involves utilizing MaxEnt machine learning techniques. 

The MaxEnt model was employed to forecast habitat suitability for key species, including Ursus 

arctos, Capra aegagrus, Ovis ammon, Lutra lutra, Martes foina, Lynx lynx, and Panthera pardus. 

Additionally, Linkage Pathways were employed to model ecological corridors connecting core 

habitats, enhancing our understanding of landscape connectivity for these species. The results 

showed that it is imperative to safeguard vital northern and southern areas between the prohibited 

hunting zones and the protected area. These areas provide the best routes for species to move 

between two habitats. However, settlements and rural areas pose a significant threat that can lead 

to the reduction or destruction of these communication areas. Therefore, protecting these regions 

should be a top priority. 
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Introduction 
The world is currently witnessing a monumental transformation as cities expand at an 

unprecedented rate globally. Over recent decades, there has been a significant rural-to-urban 

migration trend, projected to continue, with an estimated 68% of the global population expected 

to reside in urban areas by 2050, predominantly in developing regions (Chang et al., 2021; United 

Nations, 2018). However, this rapid urbanization comes at a considerable environmental cost. 

Industrialization, land use changes, and land cover alterations have all contributed to adverse 

effects on ecological environments and landscape integrity (McDonald et al., 2008). Human 

activities have increasingly fragmented natural habitats and altered landscape patterns, leading to 

a decline in biodiversity. Habitat destruction has displaced species, reducing their populations. 

Fragmentation also isolates species, limiting gene transfer and decreasing genetic diversity. 

Therefore, regulating human activities contributing to habitat fragmentation is critical for 

preserving natural habitats and regional biodiversity. A key approach to addressing these 

challenges is habitat suitability assessment, which helps predict optimal conditions for species 

survival. By identifying suitable habitats, this method plays a crucial role in preventing habitat 

destruction and mitigating biodiversity degradation. 

Predicting species distribution and assessing habitat suitability involve employing various 

methodologies, with Support Vector Machines (SVMs) and MaxEnt (Maximum Entropy) being 

prominent. MaxEnt, a machine learning algorithm, excels in capturing complex relationships 

based on species presence data and habitat suitability, particularly those with non-linear 

associations. Numerous studies have validated the effectiveness of MaxEnt in habitat suitability 

modeling (Hoang et al., 2010; Muñoz-Mas et al., 2018; Wei et al., 2018; Hallgren et al., 2019; 

Jayasinghe et al., 2019; Zhen et al., 2018). The MaxEnt model is favored for its predictive accuracy 

and usability in defining suitable habitats. It offers fast computation, user-friendly application, 

high precision, and commendable performance in geographic distribution studies and conservation 

initiatives (Warren & Seifert, 2011; Phillips et al., 2017). Researchers utilize MaxEnt to simulate 

various scenarios and identify optimal zones for species protection, considering factors such as 

environmental conditions, socioeconomic influences, and minimizing human impact (Cudlín et 

al., 2020; Struebig et al., 2015; Kaky et al., 2020; Schmidt et al., 2020; Singh et al., 2020; Wang 

et al., 2020). 
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This research focuses on identifying optimal distribution regions for seven species Aegagrus, 

Ursus arctos, Panthera pardus, Ovis ammon, Lutra lutra, Lynx lynx, and Martes foina-using the 

MaxEnt model. It explores the correlation between environmental factors and habitat suitability 

while evaluating the impact of each parameter on species distribution. Additionally, an ecological 

corridors model is applied to devise effective conservation strategies. The study aims to pinpoint 

priority conservation areas within the Alborz province, emphasizing habitat suitability and 

ecological corridor establishment and proposing specific conservation actions. 

 

Material and methods 
Study area 

The Alborz province, spanning 5,833 km2, is located in northwestern Iran. Within this province, 

the Karaj District is one of six districts. It is situated near the Central Alborz Protected Area (Figure 

1), covering approximately 640 km2 and renowned for its diverse and abundant biodiversity. The 

city of Karaj itself covers around 4,000 km2 and lies within the Alborz province. This region 

supports a variety of large mammal species, including brown bears (Ursus arctos), Eurasian lynx 

(Lynx lynx), Persian leopards (Panthera pardus), wild goats (Capra aegagrus), wild sheep (Ovis 

ammon gmelini), and gray wolves (Canis lupus), collectively enhancing the biodiversity of the 

province. As the provincial capital, Karaj is the second most densely populated megacity in Iran 

after Tehran. 
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Figure 1. The Alborz province is illustrated with the Digital Elevation Model (DEM) and the distribution 

of seven species 

Maximum entropy (MaxEnt) model construction and evaluation 
 

The modeling technique used in this study assesses the likelihood of species viability by 

integrating presence data and generating background points to establish a maximum entropy 

distribution (Sharma et al., 2018; Wei et al., 2018; Abolmaali et al., 2018; Zhang et al., 2019). The 

MaxEnt model offers several advantages, particularly its ability to adapt to presence-only data, 

which is beneficial for programs with limited sample sizes or incomplete datasets (Aguilar et al., 

2017; Fois et al., 2018; Bosso et al., 2013). It can effectively incorporate categorical and 

continuous environmental layers, demonstrating reliable performance even when dealing with 

constrained sample sizes (Yi et al., 2016; Fois et al., 2018). 

The Jackknife test was employed to evaluate the significance of conditioning factors. Seventy-five 

percent of the presence-only data was used for model training, while the remaining 25% was 

reserved for testing. ENM Tools facilitated the selection of optimal feature parameters with a 

regularization multiplier set at 0.5. Habitat suitability assessment was performed using the 100-

times bootstrap method. Performance evaluation was based on the AUC (area under the curve) 

metric, ranging from 0.5 to 0.6 indicating inadequate performance, and from 0.9 to 1 indicating 
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outstanding performance (Zhang et al., 2019; Phillips et al., 2006; Jin et al., 2008; Huang et al., 

2018; Yu et al., 2020; Lobo et al., 2008; Wang et al., 2007). Occurrence data for this study were 

collected throughout the year using GPS to document the geographical coordinates of sample sites 

from spring to winter 2022. The dataset includes 19 points for Ursus arctos (representing 21 

populations), 67 points for Capra aegagrus (representing 1,995 populations), 7 points for Lutra 

lutra, 8 points for Lynx lynx, 14 points for Ovis ammon (representing 135 populations), 14 points 

for Panthera pardus (representing 15 populations), and 6 points for Martes foina. Following data 

collection, a thorough review identified and removed points with geocoding errors and duplicate 

records, ensuring the accuracy and integrity of spatial information. 

Selective criteria for assessing species habitat 

Environmental factors significantly impact species distribution, and predicting suitable habitats 

requires carefully selecting relevant variables. To model species distribution and habitat suitability, 

we aim to estimate environmental conditions suitable for the target species. Key variables chosen 

for this study include topographic factors (Digital Elevation Model, slope, distance to rivers, 

forests, agricultural lands, residential areas, and roads), climatic factors (annual rainfall, average 

annual temperature), and vegetation density. 

Digital Elevation Model (DEM) and Slope 

The SRTM DEM data became available for non-U.S. countries, and in 2015, the Southeast Asia 

dataset of SRTM DEM was released with a higher resolution of 30 meters (Table 1). The DEM 

with a pixel size of 30 meters was obtained from the USGS website, and specific information 

regarding the Alborz province was extracted from it. For land use/land cover, road, and river 

layers, Landsat 8 imagery (accessed on February 10, 2024, from https://earthexplorer.usgs.gov/) 

was utilized. The imagery underwent preprocessing to enhance its quality, which included 

atmospheric correction, pan-sharpening techniques, and radiometric calibration. After pre-analysis 

and manual inspection, land-use classification employed the Maximum Likelihood approach, 

identifying eight primary classes. Validation through field visits at 86 random points per class 

yielded a land-use map with a precision rate of 86% and a kappa coefficient of 0.82, indicating 

high reliability for further analysis. Road and river layers were sourced from the National 

Cartographic Center (accessed on April 3, 2024, from https://gndb.ncc.gov.ir/) at a resolution 

1:250,000, with specific information extracted for the Alborz province. 
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Normalized Difference Vegetation Index (NDVI) values range from -1 to 1, where lower values 

indicate vegetation experiencing moisture stress and higher values denote denser green vegetation 

(Wardlow et al., 2007; Javadnia et al., 2009). This study generated the NDVI map using Landsat 

imagery downloaded from the USGS website. 

Corridor Mapping 

Corridors are elongated habitats that typically have a length greater than their width, connecting 

separate habitat patches. These corridors vary in shape, size, and composition but primarily 

facilitate species and individual movement. By maintaining connectivity between local 

populations, corridors promote genetic diversity and reduce species extinction risk. This 

connectivity is crucial in fragmented landscapes affected by human activities such as urban 

development, agriculture, roads, and deforestation. Corridors enable plants and animals to disperse 

and migrate, supporting vital movement patterns essential for species' survival. Today, protected 

areas often face fragmentation due to human activities, restricting species from freely moving 

between habitats. In such fragmented environments, species encounter heightened risks such as 

increased predator encounters, limited resources, and reduced shelter. In this study, identifying 

optimal corridors for the species under investigation involves using two data sets. First, core 

habitat areas where the species migrates seasonally or non-seasonally are identified. Second, an 

environmental resistance layer against species movement is considered. The Central Alborz 

Protected Area and the Talaghan No-Hunting Zone are recognized as key habitats for the studied 

species, emphasizing their importance as core areas. Most species observations occur in these 

regions, highlighting the critical need for favorable connections between these habitats. 

To calculate environmental resistance to species movement, the following relationship was utilized 

(Atwood et al., 2011): 

Travel cost; cell resistance=1−pixel suitability 

Here, "pixel suitability" refers to the final suitability value of each pixel derived from habitat 

suitability calculations. The delineation of corridors for each species using the least-cost method 

involves employing the Corridor Designer add-on within the ArcGIS 10.4 software framework. 

This method begins from the origin and proceeds pixel by pixel toward the destination, selecting 

the path with the least associated cost for species movement. 
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Results 

Land use and Land cover, and NDVI 

As shown in Figure 2, the predominant land cover in the area is grasslands, occupying nearly 70% 

of the total area. These grasslands are concentrated primarily in the northern and southwestern 

regions. Following grasslands, fallow land covers 9.52% of the area, while residential areas 

account for 9%, predominantly situated in the central part of the region. Water bodies, gardens, 

and agriculture cover 0.93%, 3.4%, and 3% of the area, respectively. Additionally, the highest 

density of roads is found in the central and northern parts of the Alborz province. 

 

Figure 2. The land use/land cover map is shown with River, and Road and NDVI in 2022 

Model Accuracy 

 

Based on the assessment outcomes of the Receiver Operating Characteristic (ROC) curve, the 

average Area Under the Curve (AUC) values are as follows: 0.953 for Ursus arctos, 0.886 for 

Capra aegagrus, 0.867 for Ovis ammon, 0.988 for Lutra lutra, 0.925 for Martes foina, 0.873 for 

Lynx lynx, and 0.856 for Panthera pardus. These results indicate that the model demonstrated 

superb predictive accuracy and reliability. Therefore, it is a dependable tool for evaluating habitat 

suitability for each species. 
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Identified Environmental criteria 

According to Table 1, the environmental criteria influencing habitat suitability for each species 

are as follows: 

• For Ursus arctos: distance to the forest (35.4%) > distance to the river (29.2%) > NDVI 

(23.8%). 

• For Capra aegagrus and Ovis ammon: DEM (Digital Elevation Model) is the main factor, 

accounting for almost 55%. 

• For Lutra lutra: distance to the river is the most important factor, contributing 55.7%. 

• For Martes foina, Lynx lynx, and Panthera pardus, distance to the forest is the primary factor, 

with percentages of 50.3%, 78.6%, and 62.8%, respectively. 

These percentages indicate the relative importance of each environmental criterion in influencing 

habitat suitability for the respective species. 

Table 1. Percent contribution of environmental parameters  

Species 
Percent contribution 

Forest River NDVI Slope Road Cultivation DEM Residents 

Ursus arctos 35.4 29.2 23.8 6.4 3.4 1.2 0.6 - 

Capra aegagrus 1.4 38.4 0.4 3.9 - - 55.8 - 

Ovis ammon - 0.4 - 0.2 40.9 0.2 55.4 3 

Lutra lutra 21 55.7 9.2 11.3 2.8 - - - 

Martes foina 50.3 43.8 0.2 - 0.4 - 3.4 2 

Lynx lynx 78.6 - 1.3 19.2 0.5 - 0.4 - 

Panthera pardus 62.8 3.3 - 21.3 9.5 3 - - 

 

Prediction of suitable habitat 

The results of the suitability habitat have been presented in Figure 3. 
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Figure 3. Habitat suitability for seven species in Alborz province as modeled. Light and Dark areas 

represent the greatest habitat suitability. 

The "10 percentile training presence" method was employed to convert Figure 3 into a binary 

map distinguishing desirable and undesirable habitats for the seven species. The outcomes of this 

conversion are illustrated in Figure 4. 
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Figure 4. Suitable habitat for seven species 

More than 50% of the desirable habitat for Ursus arctos (27,385 hectares), Lutra lutra (6,331 

hectares), and Martes foina (43,222 hectares) are located outside of protected areas. Additionally, 

41.8% of the desirable habitat for Capra aegagrus (44,020 hectares) and 45% of that for Ovis 

ammon (40,862 hectares) are situated outside of protected areas (Table 2). 

 

Table 2. The area of desirable-, and protected area 

Species 

Area (ha) % 

Desirable habitats Protected habitats 
Habitats outside 

protected areas 

Habitats outside 

protected areas 

Ursus arctos 47206 19821 27385 58 

Capra aegagrus 105248 61228 44020 8.41 

Ovis ammon 90823 49961 40862 45 

Lutra lutra 10908 4577 6331 58 

Martes foina 66905 23683 43222 6.64 

Lynx lynx 34175 17204 16971 6.49 

Panthera pardus 86876 53456 33420 4.38 
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Corridor Maps 

Figure 5 illustrates the modeling of the optimal route based on land use types within the study area, 

considering both the least distance and cost between two habitats for the species under 

investigation. The ecological corridor designated for Capra aegagrus (S2) is located in the northern 

part of the region. In contrast, the most favorable route for Ursus arctos (S1), Panthera pardus (S3), 

Ovis ammon (S4), Lutra lutra (S5), Lynx lynx (S6), and Martes foina (S7) is situated in the 

southern part of the region. 

 

 

Figure 5. Ecological corridors for seven species 

 

Conclusion 

The MaxEnt model effectively predicted suitable distribution regions for all seven species Ursus 

arctos, Capra aegagrus, Ovis ammon, Lutra lutra, Martes foina, Lynx lynx, and Panthera pardus 

in the Alborz province. Among these species, distance from forests emerged as the most critical 

factor influencing habitat suitability and distribution probability for Martes foina, Lynx lynx, 

Panthera pardus, and Ursus arctos. Elevation, contributing almost 60%, was also identified as a 
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significant determinant of Capra aegagrus and Ovis ammon distribution patterns. Distance from 

roads and rivers also played crucial roles in determining habitat suitability for some species. In 

contrast, NDVI (Normalized Difference Vegetation Index), distance from cultivated areas, and 

residential areas did not significantly affect habitat suitability compared to other factors. A 

significant outcome of the study was the identification of crucial connectivity zones for the seven 

indicator species within the study area. These vital areas are located in the northern and southern 

parts, between the two prohibited hunting zones and the protected area, providing essential routes 

for species movement between habitats. However, rural areas and the high density of roads and 

rivers pose significant threats that could reduce or destroy these vital connectivity areas. Therefore, 

safeguarding these regions should be a top conservation priority. 

The study also highlighted that road density is a significant threat to wildlife movement and species 

presence, particularly in the northern section of the region where ecological corridors already exist. 

Road construction exacerbates threats such as habitat fragmentation and destruction, impacting the 

movement and survival of wildlife, especially carnivores with large home ranges. To mitigate these 

negative impacts, measures such as reducing road width, traffic volume, and vehicle speed and 

constructing wildlife overpasses and underpasses can be implemented. These efforts can contribute 

to restoring biodiversity and landscape integrity to some extent. Conservation biology theory 

emphasizes the importance of wildlife crossing structures in enhancing connectivity between 

isolated habitat patches, maintaining gene flow, and ensuring population viability. Therefore, 

integrating wildlife crossings into road construction projects is essential for the region's 

conservation strategy. Even existing infrastructure not specifically designed for wildlife can still 

play a crucial role in this regard (Sanderson et al., 2006; Shi et al., 2018; Seiler et al., 2003; Huijser 

et al., 2016). 
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