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Abstract 

The African bush mango, Irvingia gabonensis Baill, 1884 (Aubry-lecomte ex o’rorke) is a 

diverse species whose edible seeds are commonly used as a delicacy in soups and as a main 

source of income throughout Cross River State, Nigeria. Given its enormous economic value 

for the rural population, we investigated current and future occurrence, geographic 

distribution, and suitable and unsuitable habitats in the face of unsustainable use and 

changing climate scenarios. Our study assessed and marked the occurrence of I. gabonensis 

using Global Positioning System (GPS) software in 36 forested areas encompassing northern, 

central and southern geographical zones of Cross River State, Nigeria. Maximum Entropy 

(MaxEnt) was applied to forecast the ecological niche of I. gabonensis currently and in the 

future under the AfriClim (RCP 8.5) 2070 scenario. The performance of the MaxEnt model 

was gauged by the ‘area under the receiver operating characteristic curve’ (ROC) and the 

complementary ‘area under the curve’ (AUC), ‘variable contribution rate, ‘jackknife tests’ 

and true skill statistics (TSS). MaxEnt results set quadruple BioClim variables (‘BIO 6 - 

minimum temperature of coldest month’, ‘BIO 12 - annual precipitation’, ‘BIO 13 - 

precipitation of coldest month’, and ‘BIO 14 - precipitation of driest month’ as most 

important decisive variables playing a role in the geographic distribution of the species. 

Currently, 94.79% of Cross River State is suitable habitat for I. gabonensis, with future 

projections showing a significant 79.59% reduction in suitable habitat at the ‘minimum 

training presence’ threshold. Only a few secure areas (20.41%); Afi Mountain Wildlife 

Sanctuary (central zone), Cross River National Park, Okwangwo Division (central zone) and 

Oban Division (southern zone) will continue to exist as suitable habitats for the species. The 

results achieved call attention to the need to protect, cultivate or breed and initiate the species 

in the preferred areas.  

Keywords: Biodiversity, climate change, conservation  
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 Introduction 

Biodiversity is the heterogeneity of the distinct manifestations of life on earth, including the 

diverse types of plants, animals, and microorganisms, the basic physical and functional unit 

of hereditary they carry within, and the ecosystems they configure. Biodiversity is essential in 

many ways including supporting the aesthetic value of the natural environment and playing a 

role in our material well-being through practical values by distributing food, feed, fuel, 

timber and medicine (MEA, 2005). Despite the utmost importance of biodiversity for the 

stability of humanity, Nigeria, as the highest populated nation in Africa, exerts the greatest 

and increasing pressure on biodiversity and forest resources of national and universal 

importance (Aju and Ezeibekwe, 2010). The major threats to biodiversity and rainforests in 

Nigeria incorporate direct and indirect circumstances related to poverty, population 

expansion, habitat degradation, unsustainable use of natural resources, and organizational, 

coordination and administrative issues (USAID, 2008). Many natural resources are overused, 

and the environment is facing increasing degradation due to uncontrolled agricultural 

applications, water and air pollution, and a wide range of circumstances. Desertification, 

habitat loss and climate change exacerbate the pressure (USAID, 2008).  

Habitat is the place or space in which an organism lives and interacts with the biotic and 

abiotic ecological factors in its habitat. Measurable or quantifiable habitat attributes and 

standards have an indirect marked effect on species dispersion and the number of different 

species represented in the environment. Habitat depletion alters the arrangement of individual 

species of the remaining habitat and leads to climatic change and habitat being broken into 

fragments (Purves and Dushoff, 2005). For this reason, habitat depletion has detrimental 

consequences for the number of different species that can be long-lasting and of extreme 

magnitude (Kruess and Tscharntke, 1994; Anadon et al., 2014). Habitat depletion is the 

principal cause of species threat, extirpation and biodiversity disappearance (Tilman et al., 

2001; Fischer and Lindenmayer, 2007). Some causes, such as long term shifts in temperatures 

and weather patterns and conversion or transformation of land’s use by humans, can reduce, 

disrupt or wipe out plant and animal habitats (Grimm et al., 2008, Yang et al., 2015).  

Currently, heating direction or temperature variation and climate-related types such as 

prolonged unusually hot weather, low rainfall leading to water shortage, water outflow in 

many places, strong rotational storms and clouds large, destructive fires are being observed at 

worldwide scale and from region to region (IPCC, 2013, 2014). These consequences could 

result in lack of reliable access to sufficient and affordable nutritious food, decline or 
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disappearance of biological diversity, and economic benefits derived from the ecological 

functions of ecosystems for people (Bentz et al., 2010, IPCC, 2014). In addition to the threat 

of long term shifts in temperatures and weather patterns, species may react in divergent ways. 

For-instance, species may continue to live or exist at the edge or border of their regional 

range, travel or migrate to novel spheres in which ecological factors or circumstances are to a 

greater extent suitable, or may surprisingly have no living members (IPCC, 2014; Abrahms et 

al., 2017). To organize or manage the dangers of long term shifts in temperature and weather 

conditions to biodiversity; it is necessary to understand more about the geographic 

distribution of species and the circumstances that give rise to their spatial patterns. 

The dispersion of a plant species in a set of ordered locations is controlled by the different but 

interrelated interaction of living and non-living conditions. Some circumstances comprise 

climate, soil attributes or features, competition between members of the same species and 

competition between members of different species, anthropogenic disturbance and dispersion 

restriction (Blach-Overgaad et al., 2010). Nevertheless, environmental conditions are the 

principal indicators of species' life states, while dispersion restrictions and biotic reciprocal 

action can additionally make partial changes to distribution (Soberón and Peterson, 2005). An 

exceptional understanding of a species' environmental needs is for that reason essential to 

appraise the huge geographical extent at which place it might exist and associated possible 

response to long term shifts in temperature and weather conditions for preservation or 

protection and supervision goals (Bowe and Haq, 2010). Developed upon this slant, 

ecological niche modelling uses the connection amid or around species' locations of existence 

and the individual associated environmental factors to give a description or details of the 

ecological niche and likely geographical dispersion of species (Peterson et al., 2011). Such 

ecological niche modelling techniques are now extensively employed in the detailed 

investigation and analysis of species dispersion in geographic space, protection and 

restoration of biodiversity and ecology (Stockwell and Peterson, 2001; Seguardo and Arajuo, 

2004; Pearson et al., 2007; Elith et al., 2011).  

Irvingia gabonensis is a species of tree belonging to the family Irvingiaceae and grows to a 

mid-height of 30-50 m. It is native to the muggy forest region of the northernmost part of the 

tropical Atlantic Ocean from Western Nigeria to the Central African Republic south to 

Angola and further into western DR Congo. Also present in São Tomé and Príncipe (Orwa et 

al., 2009). Its preferred habitat is a slightly wet lowland tropical forest extending underneath 

1000 m elevation and with a yearly rainfall of 1500–3000 mm and an average yearly 

temperature of 25–32 °C (Tchoundjeu and Atangana, 2007; Orwa et al., 2009). Fruits are 
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consumed as an excellent source of vitamins in addition to their economic value as a main 

source of income (FAO, 2007). The fruits are also refined into jelly, jam, juice and 

sometimes even wine (FAO, 2007). The paste is used to produce a black dye for colouring 

fabrics; the seeds are smoothed to make edible oil used for cooking (Iponga et al., 2018). The 

oil is additionally refined into soap and cosmetics (Tchoundjeu and Atangana, 2007). The 

hardwood is used for heavy construction and branches as fuel (Tchoundjeu and Atangana, 

2007). Food additives from species are used for weight control (Egras et al., 2011). The 

doubled population and high levels of poverty lead to further dependence on this forest 

resource (I. gabonensis) in Cross River State. This has culminated in the unsustainable use of 

the species in the wild. The conservation status of this species is currently near threatened 

(IUCN, 2020). Given the enormous economic value of the species to the public, in the face of 

unsustainable uses and in the context of climate change, we have assessed emerging, suitable 

and unsuitable habitats (current and future) of the species. Our findings will lead to effective 

management, sustainable use and conservation of the species in Cross River State, Nigeria.  

   

Materials and methods  

Study area  

The study was carried out in Cross River State, a coastline state located in southern Nigeria 

and christened after the Cross River, which flows across the state. The area of the state is 

about 20, 156 km². Cross River State borders Benue to the north, Enugu and Abia to the west, 

Republic of Cameroon to the east and Akwa Ibom and the Atlantic Ocean to the south (Fig. 

1a). The State is located between, latitude 5° 45′N and 6˚ 10ˈN and longitude 8° 30′E and 8˚ 

39ˈE (Aju and Ezeibekwe, 2010). The study was conducted in thirty-six (36) communities, 

selected on the basis of their forest areas, located in the Northern, Central and Southern zones 

of Cross River State, Nigeria (Fig. 1b). An eighteen (18) month study was conducted between 

April 2019 and October 2020 to generate field data. The height of the study area is between 

140 m and 400 m above sea level. The state has a tropical climate with a mean yearly rainfall 

of 1250 mm - 2800 mm or more (NIMET, 2015). The rainy season lasts about seven months. 

The area usually experiences a rainy climate, and daily temperature variations are noticeable 

throughout the year. Two periods appear in the year; the dry period which occurs around 

November to March, and the rainy period which begins in March, reach its highest levels in 

July and September (FME, 2006). The temperature is intense throughout the year with only 

slight or minor differences. The proximity of the Atlantic Ocean has a reasonable impact on 

temperature with an average daily maximum of 35°C and an observed mean real temperature 
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of 26°C. The measure of the water vapour content of the air is about 80-90% (NIMET, 2015). 

The terrain is highly undulating and has soils that usually extend downward away from the 

upper or surface, and permeable, poorly organized and completely dry soils with small to 

medium conditions (NIMET, 2015). The flora of the area is a mixture or assortment of 

mangroves, rainforests and savannahs. Rainforests are also subdivided into lowland 

rainforests and freshwater swamp forests (Edet et al., 2012). 

 
                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Location of Cross River State on the geographic map of Nigeria, b) Cross River 

situation map showing study areas (from data generated during fieldwork) 

 

Occurrence data  

Occurrence data that we used in our study are primary data obtained from our forest study. 

Two forest areas were sampled in each local government area of Cross River State (Fig. 1b). 

A total of 190 geo-referenced records across the northern, central and southern zones of 

Cross River State were obtained and used to run the model. Species encounter points 

obtained in our study area are presented in Fig. 2. It is pertinent to state that some of our 

study sites or zones had more occurrence points of I. gabonensis than other sites or zones. It 

is a well-known fact that a rudimentary or primitive constraint on sampling data only is 

sample bias, in which certain areas in the area under study are sampled more extensively or 

strongly than the rest (Philips et al., 2009). As a means to this end, we anticipated that in our 

1a 
1b 
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Nigeria 

Cross River State 

Central zone 

Northern zone 

Southern zone 

study area, where the species thrives, we may not have sampled to the same magnitude, 

therefore we scored deviation points on a scale of 1 (less attempt at sampling scale) to 4 

(largest sampling scale attempt) to represent sampling attempts in our study area (Elith et al., 

2011). The above allowed us to make available bias occurrence points to run our ‘MaxEnt 

model’. The coordinates of species recorded in our sampled forests were marked with Global 

Positioning System (GPS) software (GARMIN GPS MAP 78 sc). Moreover, we validated 

each coordinates and transformed it to acquire the decimal latitude and decimal longitude 

using the site www.gps-coordinates.net. Species name, decimal latitude, and decimal 

longitude for species were computed on a Microsoft Excel spreadsheet and saved as a .csv 

(comma-separated value) file, then used to run MaxEnt model (Philips et al., 2006) as the 

niche model recognizes only a .CSV file. The terminal dataset of geo-referenced species 

records was exported into Quantum Geographic Information System (QGIS) software ver. 

2.18.1 to check if any coordinates fell outside our study area.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 2. Irvingia gabonensis occurrences in Cross River State forests   
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Ecological niche modelling for the geographic distribution of the species 

The likely geographic distribution of I. gabonensis suitable and unsuitable habitats in the 

current and future was predicted using; BioClim and AfriClim variables, Quantum 

Geographic Information System (QGIS) software ver. QGIS-OSGeo4W-2.18.1and Maximum 

Entropy species distribution model ver. Jre-8u191-windows.   

BIOCLIM variables used to forecast the current distribution of I. gabonensis  

Our study, utilized fifteen downloads of basic bioclimatic variables (BIO 1 – BIO 7 as well as 

BIO 10 – 17) for forest tree habitats in Africa and Nigeria from the WorldClim site 

(https://www.world clim.org/ bioclim – Hijmans et al., 2005) to drive our model (current 

distribution). These characteristics were obtained via monthly ‘temperature and precipitation’ 

input data covering part of 1950-2000 and are loosely affiliated with the enlargement, 

maturation and spread of species, therefore they remain broadly or extensively used in the 

species distribution evaluation (Elith et al., 2006, Graham et al., 2008, Warren et al., 2013).    

MaxEnt model calibration and fitting 

MaxEnt model employs stochastically collected background data in the area of interest to 

compute the likelihood of the species' occurrence (Phillips et al.., 2006). To separate the 

environmental variables influencing the spatial dispersion of occurrence records is the goal 

behind the background data selection (Philips et al., 2009). Such a measure is crucial for 

presence-only data considering it reduces sample bias and refine the way that models do 

predictions (Philips et al., 2009). The approach used by the MaxEnt model is in some ways 

restrictive because true-absence data are required to obtain a reliable estimate of the 

likelihood of a species' presence in a given area of interest (Soberon and Peterson, 2005; 

Pearce and Boyce, 2006; Soberon and Nakamura, 2009). The Genetic Algorithm for Rule-Set 

Prediction (GARP), Generalized Linear Models (GLM), and Boosted Regression Tree (BRT) 

are among other algorithmic programs that have been acknowledged to have less acceptable 

forecasting abilities (Pearson et al., 2007). MaxEnt typically appears to have predicted a 

sizable portion of species presence, forecasting the connections of species to environment 

mapping forecasts, deducing or inferring forecasts past the training data, and is therefore also 

applicable in analysis objectives devised to detect novel dispersion areas of species (Pearson 

et al., 2007; Elith and Graham, 2009). The environmental layers from the WorldClim 

database must be adjusted to our research area in order to run the MaxEnt model because they 

cover the entire world. The precise environmental information for the area under 

consideration will be provided by such calibration (Philips et al., 2006). To achieve this 
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objective, we processed the environmental data for modelling by calibrating environmental 

layers to Africa and Nigeria using QGIS (Philips et al., 2006). After clipping the occurrence 

data on the variables using the setting or predesigned value 1 as regularization multiplier 

(beta value), the BioClim variables BIO1 - 7 and 10 - 17 downloaded as Raster files were 

polygonized, categorized, and translated to ascii format using QGIS. After that, suitable 

environmental characteristics were selected using the percentage contribution of variables 

and jackknife tests. While training the MaxEnt model, we kept track of the environmental 

features that have a salient effect on the model. Each trace of the MaxEnt encryption or 

program elevates the gain of the model by changing the multiplier for a single variable; the 

algorithm allocates or allots the multiply in gain to the bioclim variable on which the species 

relies, changing or replacing them with per-centum at the termination of the training 

operation or procedure (Philips et al., 2006). In this study, to test this detail, we used the 

recommended settings or indications that have been shown to provide vigorous or healthy 

outcomes as reported by Phillips and Dudik (2008). The maximum iteration was set-to 1000, 

and the number of synchronizations was set-to 10. The remaining substitutes are placed in 

default. The models replicating climate change build upon the horizons (scenarios) of 

modification or adjustment in the rate of movement of energy in the aerosphere triggered by 

human activities of climate change, calculated in watts/meter2 (IPCC, 2013). In the scheme of 

the IPCC's Fifth Assessment Report (ARS), a novel number of horizons, the ‘Representative 

Concentration Pathways’ (RCPs), were employed for the novel climate programs or models 

developed by the ‘World Climate Research Program's Coupled Model Inter Comparison 

Project Phase 5’ (CMIP5). The intensity of predicted modifications in climate is significantly 

influenced by the option of emission horizons (IPCC, 2013). Foursome RCP horizons are 

employed within CMIP5. They are denoted and described by the maximum level or 

equilibrium of 21st century radiative forcing (RF) procured via the input model (IPCC, 

2013). The RCPS is; the minimum RCP horizon equivalent to an ‘RF of 2.6 W/m2’ in 2100, 

two middle RCP horizons equivalent to an ‘RF of 4.5’ of 6 W/m2’ in 2100, respectively, and 

the maximum or peaked RCP horizon that it is equivalent to an ‘RF of 8.5 W m2’ in 2100. 

Amongst all these horizons, discharges may be required to decrease or reduce significantly to 

get to a measure or extent of ‘2.5 W/m2’ by the termination of the 21st centenary. To achieve 

this goal, the progressive or cumulative emissions consumption will be around 70% 

compared to baseline drift this century (van Vuuren et al., 2011). This will require 

considerable attempts and participation or action by every nation to boost or amplify energy 

productivity, replacing the inexorable utilization of petroleum with inexhaustible or 
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sustainable energy, thermonuclear energy (van Vuuren et al., 2011). At the moment, both at 

the country level and globally, not much has been done to achieve this goal, and indeed, 

countries among the countries that emit massive greenhouse gases do not agree on the steps 

or measures to be taken with regard to reducing emissions. Thus, accomplishing the goal of 

the RCP 2.6 horizon is unclear or questionable. Also, ‘RCP 4.5’ is the middle way where 

some government and international people's attempts to reduce its levels are predicting to 

reduce ‘RF in 4.5 W/m2’ by 2100 which is also less likely. From the foregoing, in predicting 

the distribution of I. gabonensis, we chose the ‘RCP 8.5’ scenario which is the most extreme 

scenario and where mitigation efforts by governments and international people are 

hypothesized to be minimal. When selecting the largest significant variables for the model, 

the model was run using all data points, i.e. test data included and run 50 times with bootstrap 

as a duplicate run category. In the ‘bootstrapping’ synchronization procedure the training data 

is chosen at random with the addition or substitution via the occurrence points. Where the 

quantity of samples matches the total number of presence points (Phillips, 2010). This 

alternative would recompense for the smaller number of sites present in the study area. 

 MaxEnt model evaluation   

In this study, the model was appraised by utilizing the ‘area under the receiver operating 

characteristic (ROC) curve’ (Peterson et al., 2008) and its associated ‘area under curve 

(AUC)’ (Elith et al., 2006), percentage contributing variable table and jackknife plots; 

‘Regularized training gain’, ‘Test gain’, and ‘AUC’ were mastered to set the largest 

significant dedicated variable to the model (Phillips and Dudik 2008). The regularized 

training gain is used as a guide for model fitting. Regularized training gain is the size, 

number, or degree of interval in the middle of two or more distribution variables of any two 

or more random variables that exhibit correlated variation over randomly selected 

background plots and coincident distribution of covariates over known species plots (Elith et 

al., 2011). As a result, an enormous regularization training gain (RTG ≥ 1) indicates an 

attractiveness for a limited scope of environmental conditions compared to large or large 

terrain, while a one-minute training gain (RTG ≤ 1) indicates a specific habitat deficiency 

(Merow et al., 2013). The test gain is, in general, an indication of how much better the model 

is than the random fit. A large increase ≥ 1 for a particular variable therefore means that the 

variable has significant prognostic value. The major advantage is that these variables are 

desirable predictors of where species may develop and are related to life processes (Elith et 

al., 2006). AUC typifies the likelihood that a stochastically selected presence position of a 
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species will-be classified as farther suitable relative to stochastically selected absence 

position (Elith et al., 2006). A model is contemplated to have an excellent or unique 

performance whenever AUC is approximately 1 (AUC ≥ 0.75) (Elith et al., 2006). In 

addition, model performance was assessed using true skills statistics (TSS) (Allouche et al., 

2006; Elith et al., 2006). TSS is the ability consanguineous to model to correctly or flawlessly 

identify the precise presence and precise absence. A model with TSS ≤ 0 specifies an 

arbitrary forecast; whilst one with a TSS approximately 1 (TSS ˃ 0.5) has excellent 

diagnostic and numerical strength (Allouche et al., 2006). We obtained the TSS value for ten 

synchronization runs from the MaxEnt model for the species using the TSS Excel 

spreadsheet. 

MaxEnt model projection   

To predict the MaxEnt model for I. gabonensis we created another niche model that was 

projected into the climate scenario for the year 2070 (Phillips et al., 2006) called the 

Africlimate Ensemble Model under the ‘Representative Concentration Pathway RCP 8.5’ 

Future_2070_rcp85 was created. We used compatible climate variables for prediction of 

Future_2070_rcp85_bis from the Paired Model Inter Comparison available on AfriClim 

database (https://webfiles.york.ac.uk/KITE/AfriClim/GeoTIFF_150s/ - Platts et al., 2014), 

Available from the ‘Project Phase 5 (CMIP5)’ of the ‘Intergovernmental Panel on Climate 

Change (IPCC) Fifth Assessment’ for the years 2070; intermediate of 2061-2080 interval. 

These data are forecasted by 15 General Concentration Models (GCM) under four 

greenhouse gas concentration settings recognized as RCPs. According to van Vuuren et al., 

(2011) RCPs are next-generation configurations and are favoured by the Special Report on 

Emissions Scenarios (SRES) since they permit greater docility and reduce charges or 

expenditure in the modelling procedure. In addition, RCPs require friendly relationships in 

collision, adaptation and vulnerability studies, as well as climate and unified evaluation 

modelling (van Vuuren and Carter, 2014). The RCP setting was devised to investigate 

different mergers of scenarios such as demographics, economic and social, human use of land 

and technology (Moss et al., 2010). Solely 15 projection environmental layers (BIO 1 – BIO 

7 as well as BIO 10 – BIO 17) are obtainable on AfriClim database, in addition to that asserts 

the motive we depended upon WorldClim to select specific connected environmental 

variables for the current distribution of the species. The AfriClim variants have been 

considered for prediction over the WorldClim variants for the reason that they are more 

closely aligned with the realities of the biome in Africa than the total number of census 
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decisions in the numerical picture of large-scale training models (Platts et al., 2014). As 

another matter, mass rotation models possess limited assurance of simulating exterior 

temperatures at the regional scale compared to the broad scale and do not simulate 

precipitation at the regional scale as a result of the unpredictability in estimations (IPCC, 

2013), is done in the AfriClim unit arising out-of two regional rotation models. An array of 

observation criteria was applied to limit the model to a resolution capable of showing local 

environmental fluctuations or differences and is functional or practical for local ecological 

applications (Platts et al., 2014).  

MaxEnt model threshold 

To threshold the MaxEnt model, we used QGIS 2.18.1 to reclassify, transform, and 

polygonize raster to vector connected output layer as well as estimate the species space 

associated with decision thresholds for current and future climates in 2070 Scenarios where 

the area or size of the distribution changes. However, the only decision threshold we used 

was “minimum training presence”. The reason is that this range represents areas where 

environmental characteristics are as favourable or superior as the occurrence of I. gabonensis 

established occurrence sites that are permanent, stable, and all an ecologically rational 

alternative (Pearson et al., 2007). In comperes, maximum training presence is less consistent 

and most likely alternate presence. Based on the threshold of the minimum training presence, 

we classified MaxEnt ASCII file output as suitable and unsuitable (Kakpo et al., 2019). 

 Results 
  

Species presence records   

A total of 190 occurrence points (species presence records) for I. gabonensis (plate 1) were 

recorded across forests in the study area and used in this study. The coordinates (decimal 

latitude (˚N) and longitude (˚E) of the species recorded across Cross River State forests are 

listed in Appendix 1.   

 

        

i     ii 
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Plate 1. Irvingia gabonensis (O’Rorke) Baill. (i) tree (ii) flowers (iii) fruits (iv) seeds    
  

MaxEnt model validation  

The results with respect to niche model assessments pertaining I. gabonensis denote or 

specify its robustness with ten bootstrapping synchronizations AUC = 0.944 (Fig. 2) and TSS 

= 0.85 (Fig. 3). For this reason, the model performed well and had positive predictive ability 

and performed efficiently compared to arbitrary ones.   

 
Figure 2. Ten bootstrapping synchronization runs AUC using the MaxEnt model  
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Figure 3. True skill statistics (TSS) for MaxEnt model  

Climate variables influencing the geographic distribution of Irvingia gabonensis  

In this study, the charts of variable importance (Fig. 4 i, ii and iii) and the table of variable 

ratio input and order of significance (Table 1): this action or standard depends entirely on the 

final series of the MaxEnt model, not the route or pathway used to achieve this. The role 

played by the individual climate variable is adjusted by arbitrarily changing the placement 

order of that variable's values amidst the training points; ‘presence and background’ and 

calculating or computing the resultant reduction in training AUC. A high reduction specifies 

intensely the model is strongly dependent on this variable; Variables are interpolated to 

obtain per cent input ratio) identified quadruple climatic variables (‘BIO 6 - minimum 

temperature of coldest month’, ‘BIO 12 - annual precipitation’, ‘BIO 13 -precipitation of the 

wettest month’, as well as ‘BIO 14 - precipitation of the driest month’) as playing the greatest 

part of the range or distribution area of I. gabonensis throughout Cross River State. Variable 

importance charts supported that removing any of these four variables did not allow for 

optimization compared to using the entire variable set (regularization training gain, AUC, and 

test gain). Consistent with the variable influence charts, the variable input ratio table for I. 

gabonensis (Table 1) shows that BIO 12 was the most significant defining or influencing 

variable among the quadruple variables reserved within the model. BIO 14 reduced gain the 

highest when excluded and was the greatest revealing variable of the model. 

 

 

 ii 

i 
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Figure 4. Most influencing climatic variables to I. gabonensis distribution  

 

Table 1. Variable ratio input and order of significance  
 

Climatic features Ratio input (%) Order of significance 

BIO 12 33.5 23.6 

BIO 14 27.8 44.2 

BIO 13 25.3 5.9 

BIO 6 19.6 34.7 

The reaction curves of these variables to the forecasts fitness or validity of I. gabonensis are 

presented in Fig. 5 i, ii, iii and iv, respectively. BIO 6 (Fig. 5i) clearly represents the 

receptivity or tolerance of the species to the minimum temperature of the coldest month 

versus year variance. Consistent with the species' biosphere or ecological community; logistic 

predictions show a slight increase in response output from a minimum temperature of 0°C to 

12°C, followed by a steep rise and optimization at 25°C. Therefore, the reaction curve of BIO 

6 shows that the low-temperature tolerance limit of this species is between 12 - 25˚C in the 

coldest months. Species’ reaction to BIO 12 (Fig. 5ii) is additionally in accordance with its 

ecological communities, such as precipitation values of 1000 mm and above as optimized or 

effective values for the prediction of species high fitness or effectiveness. However, the yield 

of the reaction decreases significantly in very wet seasons (rainfall greater than 3000 mm per 

year) (Fig. 5ii). Species response to BIO 13 (Fig. 5iii) shows an excellent response with 

increasing rainfall from 0 to 600 mm and then a sharp decline after the suitability threshold of 

about 600 mm. The reaction curve of the species on BIO 14 (Fig. 5iv) shows a good response 

output from 0 to 60 mm and then a sharp drop after the trapping threshold after 60 mm. The 

result of the I. gabonensis response curves further shows that the species is vulnerable to 

periods of non-humidity (dry) and humid (wet) in its native or established habitat 

iii 
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Figure 5. Reaction curves of the climatic variables that most affect the growth of I. gabonensis   

 

Current and projected geographical distribution of I. gabonensis  
 

 We validated that the current projected optimal habitat for the species' geographic 

distribution was 94.79%, equivalent to 19,106 sq. km of the study area (20,156 km2) (Fig. 6a 

and Table 2) Currently, the species is geographically distributed in Guinea Savannah and 

forested areas of the Northern, Central and Southern geographical regions in Cross River 

State. However, few areas in Ogoja and Yala local government areas (Northern region) are 

areas of unfavourable forecasts that might be linked to the region's drier climate which is 

incompatible with species stature. In contrast, the projected future suitable habitats under the 

AfriClim RCP 8.5 scenario show a significant 79.59% decrease in suitable habitat area in 

2070, equivalent to 16,042 km2 for the species in the various regions in Cross River State 

(Fig. 6b and Table 2) at the “minimum training presence threshold”. The suitable areas fall 

within a few secure areas (Afi Mountain Wildlife Sanctuary (central zone) and Cross River 

National Park, Okwangwo Division (central zone) and Oban Division (Southern zone) and 

are the only areas that will continue to be suitable habitats for I. gabonensis. The entire 

northern region will no longer be a suitable habitat in the future scenario for the species.  

Table 2. Current and projected geographical distribution of Irvingia gabonensis across Cross 

River State 

 

Suitability    Current   AfriClim (RCP 8.5) scenario 

Range 

(km2)  

Ratio (%) Range 

(km2) 

Ratio (%) 

Suitable 19, 106 94.79 4, 114 20.41 

iv iii 

i ii 
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Unsuitable 1, 050 5.21 16, 042 79.59 

Total 20, 156  20, 156  

 

       

Figure 6a. Current predicted geographic distribution of Irvingia gabonensis in Cross River 

State and 6b) Projected distribution under AfriClim RCP 8.5 2070 scenario at the minimum 

training presence threshold 

 

  

Discussion 

Species presence  

The presence records of I. gabonensis show the spatial distribution of the species spread 

throughout the study area (Fig. 2). However, the total number of 190 occurrence points of the 

species in 36 forest areas sampled in our study is quite low (Appendix 1). This observation is 

in congruent or concurrence with other reports of tropical forest ecosystems in Cross River 

State which reported a low number of individuals of the species in forest ecosystems (Edet et 

al., 2012; Adeyemi et al., 2013; Aigbe et al., 2014; Adeyemi et al., 2015; Aigbe and 

Omokhua, 2015; Akwaji and Edu, 2017). The low distribution points of the species in our 

study area is not unexpected given that the tree is overused, as it plays an extremely crucial 

function in the cultural, medical and socio-economic life of people in the study areas. Egbe et 

al., (2012) reported a lower number of species due to pressure from human use affecting the 

growth and production of the species in Korup National Park, Cameroon. The very low 

incidence could also be attributed to the scarcity of availability of viable seeds for 

regeneration in forests, since they are mainly collected from the wild. Olajide (2004) reported 

Northern zone 

 

Central zone 

Southern zone 

Northern zone 

 

Central zone 

Southern zone 

6a

a 

  6b 
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that patterns of seed use in forests can lead to a severe shortage of regenerated seeds, as a 

large number of mother trees must have bare viable seeds. It is true that there is a positive 

association among the poor populations of some trees and the exploitation of their mature 

mother plants (Aigbe and Omokhua 2015). Another factor for the low occurrence of this 

species may be forest disturbance and fragmentation due to illegal logging and rural 

agricultural land conversion. This is in line with the report by Kumar et al., (2002) that 

several tropical forests are under immense anthropogenic pressure and require intermediation 

to maintain comprehensive biodiversity, productivity and sustainability. According to FAO 

(2005), actions such as logging and construction can lead to or contribute to a sustained 

decline in the area, health, stocks and flows of forest resources. In addition, the proximity of 

some of the forests to urban settlement (urbanization) may also account for the low 

occurrence of species in the area. Johnson and Mercellinus (2013) reports that areas that are 

generally obstructed or impeded by human use have measurable elements of the forest, such 

as trees, disturbed and the balance disrupted. The consequences of disturbance vary in 

precision according to how much of the natural environment is still protected in the process 

of resource use and development. Varshney and Anis (2014) reported that globally the 

survival of tree species of wood value is threatened by human actions and other factors such 

as geographical changes, sudden and significant increase in population and urbanization. In 

most cases, urbanization and agricultural activities are associated with some development 

activities, the land is cleared, and trees are felled, rather than considering their importance. It 

is perhaps unsurprising that endangered trees have been removed along the path of these 

developments (Wakawa et al., 2017). Finally, the low species presence could be due to 

modifications in climate factors like temperature and rainfall throughout the study area that 

may not be favourable for their distribution. Climate has been widely described as the main 

factor affecting the distribution of tree species on a local or broad range (Darrah et al., 2017; 

Breiner et al., 2017).  

  

Environmental factors controlling the spatial distribution of Irvingia gabonensis in 

Cross River State  

Irvingia gabonensis is native to the muggy forest region of the northernmost part of the 

tropical Atlantic Ocean from West Nigeria through the Central African Republic and south to 

Angola and the western region of DR Congo (Tchoundjeu and Atangana, 2007; Orwa et al., 

2009). In Cross River State the species is distinguished by abundant and regular rainfall in the 

Guinea savannah and forest areas in the northern, central and southern regions. In the natural 
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environment, the preferred habitat is low-lying tropical forests at elevations below 1000 m 

and a yearly rainfall of 1,500 - 3000 mm and an average yearly temperature of 25 - 32˚C 

(Tchoundjeu and Atangana, 2007; Iponga et al., 2018). Our study, established quadruple 

environment variables; ‘BIO 6 - minimum temperature of the coldest month’, ‘BIO 12 - 

annual rainfall’, ‘BIO 13 - rainfall of wettest month’ and ‘BIO 14 - rainfall of driest month’ 

for contributing the most to spatial distribution of I. gabonensis across Cross River State. 

Therefore, our findings are reliable in terms of species status. In fact, BIO 12 and its variants, 

BIO 13 and BIO 14, are among the features that had the greatest impact on our model for 

predicting the geographic distribution of the species. On a broad range, the spread or 

dispersion of a species relies mostly on climate (Vayreda et al., 2013), exceptionally on 

variables connected to water (Svenning and Skov, 2006). BIO 12 is a measure of changes in 

rainfall throughout the year (O'Donnell and Ignizio, 2012). According to the model, an 

annual rainfall of 1000 - 2700 mm was found to be suitable for the spatial distribution of I. 

gabonensis in our study area, which is also consistent with the ecological community of the 

species. Water has several purposes in the plants and is established to influence the 

distribution designs of species at excellent scales (Willis and Whittaker, 2002) as compared 

to worldwide scales. It is able to dissolve other substances for mineral nutrients and the 

network of organic matters manufactured inside the plant; in addition function as a 

temperature adjuster throughout the course of plant exhalation of water vapour through the 

stomata and acts as raw material in the procedure of photosynthesis which is the essential 

process fundamental to all life (Ferguson, 1959). Plants can be troubled by absence of 

moisture in addition to an excess of moisture (Haferkamp, 1987). Considering those 

significant tasks, the existence of water in the environment of plants is absolutely of high-

priority. The response of the species to the annual variations in precipitation BIO 13 and BIO 

14 in our study area also suggests that the species is sensitive to dry and wet period in its 

habitual range as the species is common in primary and secondary forest and guinea savannah 

(Orwa et al., 2009). Even though yearly mean temperature (BIO 1) was not one of the most 

significant backers to the distribution model of I. gabonensis its variation in terms of 

‘minimum temperature of coldest month (BIO 6)’ demonstrated to notably influence the 

geographic distribution of the species. It is imperative to accentuate here that the speed of 

plant growth and development is superintend by its terrain temperature and each plant has a 

clearly defined temperature range distinguished by a minimal, high and optimal (Hatfield and 

Prueger, 2015). BIO 6 estimates the coldest month with the lowest mean minimum 

temperature of 21.7˚C (O'Donnell and Ignizio, 2012). The logistic prediction of the response 
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curve showed a minimal increase in temperature from 0˚C up to 12˚C and was stable at 25˚C 

for I. gabonensis. The response curve for Bio 6 therefore confirms that the ‘minimum 

temperature of coldest month’ appropriate for the spatial distribution of the species is 25 °C, 

again is agreeable with the ecological environment of the species. According to Hatfield and 

Prueger (2015), vegetative growth enlarge and multiply as temperature climbs to the species 

optimal level and for a greater number of plant species vegetative growth normally has a 

superior optimal rate than for the reproductive growth. According to the results of their study, 

it is conceivable that immense differences in temperature like elevated value of BIO 6 can 

influence the optimal temperature of I. gabonensis and subsequently affect the distribution 

and growth of I. gabonensis development in both vegetative and reproductive stages. 

Therefore, it can be inferred that the highest value of BIO 6 exceeds that which the dispersion 

of I. gabonensis can be adversely affected, i.e. 25 ˚C. In our study, the variables BIO 6 

calculated light and heat availability and variability for the species, whereas BIO 12, 13 and 

14 calculated water availableness and variableness for I. gabonensis, respectively. Since these 

variables that control the geographic distribution of the species are basic principal 

circumstances, the models can be generalizable to areas beyond our study area and set out the 

motive of species management in such areas (Elith et al., 2011). 

 

Current and future geographical distribution of I. gabonensis  

In our study, we only examine environmental factors during our MaxEnt model building. As 

a result there is some restriction and ambiguity in the prediction of species distribution 

(Abrahams, 2017). Undoubtedly, niche models forecast habitat that is consistent with the 

species' potential location (Soberon and Peterson, 2005). It could give way to ‘false positives’ 

or ‘false negatives’ in the occurrence of a species in a forecasted geographical area (Thuiller 

et al., 2005). ‘False positives’ arise if additional circumstances or conditions other than 

climate affect the dispersion of such species and avert the species from thriving naturally 

across the likely district, zone or region under investigation (Thuiller et al., 2005; Blach-

Overgaard, 2010), while on the contrary ‘False Negatives’ manifest when the dearth of 

details amidst the environment sample or flawed sampling attempts avert accurate prediction 

or exact species presence. Evidently, those additional factors that are not linked or matched to 

climate may be connected to species' ability to disperse and interact with each other as far as 

geographical areas creating a perfect climate its basic niche (Soberon and Peterson, 2005) and 

in this way influence the dispersal or spread of the species. Even so, it is to a large extent 

inarguable or incontestable that at local, national, intercontinental and worldwide scales, 



115 | Journal of Wildlife and Biodiversity 7(Supplementary issue): 96-127 (2023) 

 

climate is the overall key variable for predicting the dispersion of species (Wills and 

Whittaker, 2002; Thuiller et al., 2005; Blach-Overgaard et al., 2010), Projecting changes in 

species spread due to worldwide change, using climate models with the particular algorithm 

is MaxEnt, which has been proven extensively (Svenning and Skov, 2006). When climate 

conditions or factors are used, the critical core space is modelled and the predicted outcome 

in geographic space is fit to a probability distribution (Pearson et al., 2007). The fundamental 

niche is defined by Hutchison (1957) as the total scale of environmental factors where a 

species can exist and reproduce without migration. In our study, the model exhibited that the 

current geographic distribution of the species is 94.79% in the Guinean savannah and forest 

areas of Cross River State (Fig. 6a). The present dispersion of the species as discovered in our 

study may be the result of little or no variability in climatic factors such as rainfall and 

temperature (Anderson et al., 2006), which are important environmental variables 

contributing to suitable habitats and the geographic distribution of species (Darrah et al., 

2017). In a similar study using MaxEnt; Kakpo et al., (2019) recounted that 47.1% are 

currently suitable habitats for Milicia excelsa in Benin; also, 83 and 98.9% of Benin are 

currently suitable habitats for Lonchocarpus sericeus and Anogeissus leiocarpa (Gbetoho et 

al., 2017). Understanding the geography and current spread of a species is of vital importance 

for assessing the risk of extinction and predicting potential future risks from circumstances 

such as climate change (Pacifici et al., associates, 2015). In contrast to the current geographic 

distribution of the species, future projections (Fig. 6b) show a significant reduction of 79.59% 

in suitable habitat at the ‘threshold of minimum training presence’ for the species in Cross 

River State under the RCP 8.5 2070 scenario. Based on thresholds decision, only the 

‘minimum training presence’ (the most stable and environmentally feasible alternative) was 

used versus the maximum training presence (the less stable and most likely presence 

alternative). As confirmed or suggested by Pearson et al., (2007), we fathom that specialized 

modelling to approximate the effect of change in climate conditions on species distributions 

relies on both the environmental conditions considered in model assembly and the bottom 

limits used to explain the outputs. Thresholds should therefore be chosen with caution. 

Nevertheless, our alternative is based on the premise that the minimum training presence 

threshold (largest stable alternative) is favourable because it embraces a forthright ecological 

explanation for creating areas no less than as applicable as that in which a species has been 

listed (Pearson et al., 2007). On the contrary, the maximum training presence threshold is a 

broader alternative, although less stable but hypothetically direct. For example, Ganglo et al., 

(2017) modelled the ecological niche of Dialium guineense Willd in West Africa in the future 
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under RCP 8.5 using both thresholds; minimum training presence and maximum training 

presence. They revealed that this last threshold was less factual or exploratory and thus not so 

much as adept to classify the maximum of the likely sites of distribution of the species. 

Because MaxEnt is acknowledged to encompass heightened forecasting power (Pearson et 

al., 2007), they estimated that at the minimum training presence threshold (the wide-ranging 

stable alternative) their results showed the greatest potential for the species spatial 

distribution in the future. We also noticed that Fandohan et al., (2015) predicted Lantana 

camara to spread over 65% of a biosphere reserve (Pendjari) and around 6% of W Regional 

Park in Benin, respectively and their prediction remains so in the future under RCP 8.5 and 

under the flexible maximum training presence threshold. From the former, it is clear that the 

minimum training presence threshold is the more effective and reliable threshold than the 

maximum training presence. The difference between current forecasts and future projections 

can be explained by changes in the values of climate parameters. The climate has been 

predicted to begin to become warmer and less humid (dryer) in West Africa under AfriClim's 

Representative Concentration Path (RCP) (Platts et al., 2015), and will lead to a more humid 

climate changes in the possible spread of the species mid-21st century. Also, the reduction of 

suitable habitats may be due to the imperative and historical changes predicted for 

bioclimatic variables, mainly precipitation and temperature. For example, I. gabonensis is 

currently adapted to temperatures ranging from 25 to 30°C and precipitation from 1500 to 

2700 mm per year (Orwa et al., 2009). Therefore, a shift in these appropriate climate 

variables from what they currently are will definitely affect or impact species distribution. As 

indicated by Busby et al., (2010), changing climatic characteristics such as precipitation and 

temperature will affect biodiversity and the spatial distribution of suitable habitats. From 

future forecasts our study found that only a few protected areas remain suitable habitats and 

conserved I. gabonensis in Cross River State. Our finding confirms that of Doxa et al., (2017) 

that preserved or secured areas are a major tool for in situ conservation of biodiversity. 

Conclusion  

We surveyed the presence and geographic distribution of I gabonensis in Cross River State, 

Nigeria, to learn with certainty the species’ geographic distribution currently and under future 

scenario (AfriClim RCP 8.5 2070) using the MaxEnt model. Our study identified four 

bioclim variables that control the geographic distribution of the species. These are ‘BIO 6 - 

minimum temperature of coldest month’, ‘BIO 12 - annual precipitation’, ‘BIO 13 - 

precipitation of wettest month’ and ‘BIO 14 - precipitation of driest month’. The species is 

currently suitable and geographically distributed in the northern, central and southern zones 
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of our study area. According to future projections, suitable habitats will decrease significantly 

in the different zones under the AfriClim RCP 8.5 2070 scenario. Only a small set of 

protected areas in both scenarios; the Afi Mountain and Wildlife Sanctuary (Central Area), 

Cross River National Park, Okwangwo Division (Central Area) and Oban Division (South 

Area) will play an indispensable role in conserving the species in Cross River State. 

Therefore, it is essential to take measures or steps to effectively conserve the species in the 

protected areas. For the sound management of the species, forest controllers or administrators 

ought-to fortify the defence of these protected areas, in particular by organizing periodic 

surveillance or monitoring. Additionally, this species could be exploited in agroforestry and 

afforestation programmes in Cross River State, Nigeria. 
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Appendix 1: Species presence records of Irvingia gabonensis (Aubry-LeComte ex 

O’Rorke) Baill. in Cross River State   

 

S/N Tree specie Decimal 

Latitude (˚N)  

Decimal Longitude 

(˚E)  

1. Irvingia gabonensis (O’Rorke) Baill.  5.275 8.691111 

2. Irvingia gabonensis (O’Rorke) Baill.  5.220277 8.695833 

3. Irvingia gabonensis (O’Rorke) Baill.  5.2175 8.701111 

4. Irvingia gabonensis (O’Rorke) Baill.  5.259444 8.931666 

5. Irvingia gabonensis (O’Rorke) Baill.  5.243611 8.941666 

6. Irvingia gabonensis (O’Rorke) Baill.  5.078888 8.689444 

7. Irvingia gabonensis (O’Rorke) Baill.  5.285 8.886111 

8. Irvingia gabonensis (O’Rorke) Baill.  5.311666 8.850833 

9. Irvingia gabonensis (O’Rorke) Baill.  5.3441667 8.838333 

10. Irvingia gabonensis (O’Rorke) Baill.  5.21 8.980555 

11. Irvingia gabonensis (O’Rorke) Baill.  5.343055 8.708333 

12. Irvingia gabonensis (O’Rorke) Baill.  5.341944 8.706111 

13. Irvingia gabonensis (O’Rorke) Baill.  5.340555 8.702222 

14. Irvingia gabonensis (O’Rorke) Baill.  5.342222 8.658611 

15. Irvingia gabonensis (O’Rorke) Baill.  5.426111 8.600277 

16. Irvingia gabonensis (O’Rorke) Baill.  5.4225 8.596944 

17. Irvingia gabonensis (O’Rorke) Baill.  5.416666 8.601666 

18. Irvingia gabonensis (O’Rorke) Baill.  5.380555 8.630277 

19. Irvingia gabonensis (O’Rorke) Baill.  5.588611 8.566388 

20. Irvingia gabonensis (O’Rorke) Baill.  5.588611 8.566111 

21. Irvingia gabonensis (O’Rorke) Baill.  5.550277 8.578338 

22. Irvingia gabonensis (O’Rorke) Baill.  5.445277 8.504444 

23. Irvingia gabonensis (O’Rorke) Baill.  5.369444 8.513611 

24. Irvingia gabonensis (O’Rorke) Baill.  5.410555 8.480833 

25. Irvingia gabonensis (O’Rorke) Baill.  5.573888 8.516388 

26. Irvingia gabonensis (O’Rorke) Baill.  5.573888 8.518611 

27. Irvingia gabonensis (O’Rorke) Baill.  5.5875 8.566666 

28. Irvingia gabonensis (O’Rorke) Baill.  5.443333 8.476944 
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29. Irvingia gabonensis (O’Rorke) Baill.  5.417777 8.529166 

30. Irvingia gabonensis (O’Rorke) Baill.  6.405555 9.440555 

31. Irvingia gabonensis (O’Rorke) Baill.  6.411944 9.199166 

32. Irvingia gabonensis (O’Rorke) Baill.  6.492777 9.443333 

33. Irvingia gabonensis (O’Rorke) Baill.  6.627222 9.421388 

34. Irvingia gabonensis (O’Rorke) Baill.  6.46944 9.220833 

35. Irvingia gabonensis (O’Rorke) Baill.  6.583888 9.266388 

36. Irvingia gabonensis (O’Rorke) Baill.  6.513888 9.265 

37. Irvingia gabonensis (O’Rorke) Baill.  5.865833 8.398888 

38. Irvingia gabonensis (O’Rorke) Baill.  5.843888 8.400833 

39. Irvingia gabonensis (O’Rorke) Baill.  5.868333 8.399444 

40. Irvingia gabonensis (O’Rorke) Baill.  5.849444 8.388888 

41.  Irvingia gabonensis (O’Rorke) Baill.  5.834722 8.396111 

42. Irvingia gabonensis (O’Rorke) Baill.  5.946388 8.252222 

43. Irvingia gabonensis (O’Rorke) Baill.  5.746944 8.108611 

44. Irvingia gabonensis (O’Rorke) Baill.  5.871944 8.298055 

45. Irvingia gabonensis (O’Rorke) Baill.  5.943055 8.250555 

46. Irvingia gabonensis (O’Rorke) Baill.  5.748611 8.118333 

47. Irvingia gabonensis (O’Rorke) Baill.  5.727777 8.296666 

48. Irvingia gabonensis (O’Rorke) Baill.  5.017777 8.418888 

49. Irvingia gabonensis (O’Rorke) Baill.  5.013611 8.418888 

50. Irvingia gabonensis (O’Rorke) Baill.  4.998055 8.420833 

51. Irvingia gabonensis (O’Rorke) Baill.  4.989444 8.427222 

52. Irvingia gabonensis (O’Rorke) Baill.  4.988333 8.428333 

53. Irvingia gabonensis (O’Rorke) Baill.  4.983333 8.433333 

54. Irvingia gabonensis (O’Rorke) Baill.  4.981388 8.436388 

55. Irvingia gabonensis (O’Rorke) Baill.  4.973611 8.444444 

56. Irvingia gabonensis (O’Rorke) Baill.  4.953333 8.472222 

57. Irvingia gabonensis (O’Rorke) Baill.  4.960277 8.508055 

58. Irvingia gabonensis (O’Rorke) Baill.  4.937222 8.539166 

59. Irvingia gabonensis (O’Rorke) Baill.  4.983055 8.416388 

60. Irvingia gabonensis (O’Rorke) Baill.  6.313055 9.112222 

61. Irvingia gabonensis (O’Rorke) Baill.  6.333055 9.102777 

62. Irvingia gabonensis (O’Rorke) Baill.  6.325833 9.356111 

63. Irvingia gabonensis (O’Rorke) Baill.  6.31 9.207777 

64. Irvingia gabonensis (O’Rorke) Baill.  6.469444 9.255555 

65. Irvingia gabonensis (O’Rorke) Baill.  6.477777 9.263888 

66. Irvingia gabonensis (O’Rorke) Baill.  6.328611 9.354444 

67. Irvingia gabonensis (O’Rorke) Baill.  6.254444 9.100555 

68. Irvingia gabonensis (O’Rorke) Baill.  5.258888 8.655833 

69. Irvingia gabonensis (O’Rorke) Baill.  5.260277 8.657222 

70. Irvingia gabonensis (O’Rorke) Baill.  5.266666 8.659722 

71. Irvingia gabonensis (O’Rorke) Baill.  5.266666 8.66 

72. Irvingia gabonensis (O’Rorke) Baill.  5.266666 8.658611 

73. Irvingia gabonensis (O’Rorke) Baill.  5.266944 8.666388 
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74. Irvingia gabonensis (O’Rorke) Baill.  5.271666 8.638888 

75. Irvingia gabonensis (O’Rorke) Baill.  6.34 9.108888 

76. Irvingia gabonensis (O’Rorke) Baill.  6.503888 9.13 

77. Irvingia gabonensis (O’Rorke) Baill.  6.463888 9.111388 

78. Irvingia gabonensis (O’Rorke) Baill.  6.347777 9.0825 

79. Irvingia gabonensis (O’Rorke) Baill.  6.498611 9.028888 

80. Irvingia gabonensis (O’Rorke) Baill.  6.500277 9.0225 

81. Irvingia gabonensis (O’Rorke) Baill.  6.496666 9.221944 

82.  Irvingia gabonensis (O’Rorke) Baill.  6.532777 9.120277 

83. Irvingia gabonensis (O’Rorke) Baill.  6.533055 9.122222 

84. Irvingia gabonensis (O’Rorke) Baill.  6.390277 9.081111 

85. Irvingia gabonensis (O’Rorke) Baill.  6.476666 9.258888 

86. Irvingia gabonensis (O’Rorke) Baill.  5.371190 8.604686 

87. Irvingia gabonensis (O’Rorke) Baill.  5.562418 8.634485 

88. Irvingia gabonensis (O’Rorke) Baill.  5.551190 8.596314 

89. Irvingia gabonensis (O’Rorke) Baill.  5.562878 8.530740 

90. Irvingia gabonensis (O’Rorke) Baill.  5.562878 8.566448 

91. Irvingia gabonensis (O’Rorke) Baill.  5.554934 8.580350 

92. Irvingia gabonensis (O’Rorke) Baill.  5.566552 8.596143 

93. Irvingia gabonensis (O’Rorke) Baill.  5.581587 8.568677 

94. Irvingia gabonensis (O’Rorke) Baill.  5.564502 8.633908 

95. Irvingia gabonensis (O’Rorke) Baill.  5.557924 8.612622 

96. Irvingia gabonensis (O’Rorke) Baill.  5.569713 8.601292 

97. Irvingia gabonensis (O’Rorke) Baill.  6.028468 8.875751 

98. Irvingia gabonensis (O’Rorke) Baill.  6.026957 8.881245 

99. Irvingia gabonensis (O’Rorke) Baill.  6.029817 8.884335 

100. Irvingia gabonensis (O’Rorke) Baill.  6.028750 8.861150 

101. Irvingia gabonensis (O’Rorke) Baill.  6.007752 8.862877 

102. Irvingia gabonensis (O’Rorke) Baill.  6.008691 8.868241 

103. Irvingia gabonensis (O’Rorke) Baill.  6.008734 8.888665 

104. Irvingia gabonensis (O’Rorke) Baill.  6.030504 8.877262 

105. Irvingia gabonensis (O’Rorke) Baill.  6.031417 8.859557 

106. Irvingia gabonensis (O’Rorke) Baill.  6.048546 8.889918 

107. Irvingia gabonensis (O’Rorke) Baill.  6.037685 8.906046 

108. Irvingia gabonensis (O’Rorke) Baill.  6.047988 8.934115 

109. Irvingia gabonensis (O’Rorke) Baill.  6.004949 8.939014 

110. Irvingia gabonensis (O’Rorke) Baill.  5.994392 8.821837 

111. Irvingia gabonensis (O’Rorke) Baill.  5.996422 8.832861 

112. Irvingia gabonensis (O’Rorke) Baill.  6.105029 8.712010 

113. Irvingia gabonensis (O’Rorke) Baill.  5.966521 8.610105 

114. Irvingia gabonensis (O’Rorke) Baill.  5.951145 8.636842 

115. Irvingia gabonensis (O’Rorke) Baill.  5.940773 8.647313 

116. Irvingia gabonensis (O’Rorke) Baill.  5.935608 8.622551 

117. Irvingia gabonensis (O’Rorke) Baill.  5.972722 8.591051 

118. Irvingia gabonensis (O’Rorke) Baill.  5.984331 8.574572 
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119. Irvingia gabonensis (O’Rorke) Baill.  5.974429 8.601007 

120. Irvingia gabonensis (O’Rorke) Baill.  5.965551 8.602724 

121. Irvingia gabonensis (O’Rorke) Baill.  5.963102 8.581781 

122. Irvingia gabonensis (O’Rorke) Baill.  5.976360 8.406858 

123. Irvingia gabonensis (O’Rorke) Baill.  5.983872 8.393125 

124. Irvingia gabonensis (O’Rorke) Baill. 5.965775 8.390036 

125. Irvingia gabonensis (O’Rorke) Baill. 5.977043 8.370466 

126. Irvingia gabonensis (O’Rorke) Baill. 5.883169 8.067977 

127. Irvingia gabonensis (O’Rorke) Baill. 5.888804 8.072612 

128. Irvingia gabonensis (O’Rorke) Baill. 5.902123 8.084285 

129. Irvingia gabonensis (O’Rorke) Baill. 5.887097 8.010299 

130. Irvingia gabonensis (O’Rorke) Baill. 5.931235 8.167369 

131. Irvingia gabonensis (O’Rorke) Baill. 5.928504 8.144367 

132. Irvingia gabonensis (O’Rorke) Baill. 5.809654 7.992618 

133. Irvingia gabonensis (O’Rorke) Baill. 6.854725 8.857388 

134. Irvingia gabonensis (O’Rorke) Baill. 6.854939 8.841552 

135. Irvingia gabonensis (O’Rorke) Baill. 6.841517 8.834256 

136. Irvingia gabonensis (O’Rorke) Baill. 6.870621 8.747166 

137. Irvingia gabonensis (O’Rorke) Baill. 6.863122 8.797978 

138. Irvingia gabonensis (O’Rorke) Baill. 6.432685 8.577067 

139. Irvingia gabonensis (O’Rorke) Baill. 6.431864 8.578322 

140. Irvingia gabonensis (O’Rorke) Baill. 6.569702 8.948769 

141. Irvingia gabonensis (O’Rorke) Baill. 6.570043 8.952417 

142. Irvingia gabonensis (O’Rorke) Baill. 6.624184 8.929903 

143. Irvingia gabonensis (O’Rorke) Baill. 6.625293 8.932650 

144. Irvingia gabonensis (O’Rorke) Baill. 6.626188 8.931749 

145. Irvingia gabonensis (O’Rorke) Baill. 6.624099 8.931963 

146. Irvingia gabonensis (O’Rorke) Baill. 6.610796 8.876538 

147. Irvingia gabonensis (O’Rorke) Baill. 6.607599 8.878598 

148. Irvingia gabonensis (O’Rorke) Baill. 6.609602 8.875508 

149. Irvingia gabonensis (O’Rorke) Baill. 6.608323 8.875508 

150. Irvingia gabonensis (O’Rorke) Baill. 6.595221 9.014303 

151. Irvingia gabonensis (O’Rorke) Baill. 6.594326 9.010655 

152. Irvingia gabonensis (O’Rorke) Baill. 6.594795 9.014217 

153. Irvingia gabonensis (O’Rorke) Baill. 6.591981 9.015419 

154. Irvingia gabonensis (O’Rorke) Baill. 6.628435 9.117769 

155. Irvingia gabonensis (O’Rorke) Baill. 6.626602 9.121760 

156. Irvingia gabonensis (O’Rorke) Baill. 6.538982 9.154057 

157 Irvingia gabonensis (O’Rorke) Baill. 6.529432 9.270443 

158. Irvingia gabonensis (O’Rorke) Baill. 6.509648 9.290356 

159. Irvingia gabonensis (O’Rorke) Baill. 6.611629 9.212422 

160. Irvingia gabonensis (O’Rorke) Baill. 6.513400 9.272160 

161 Irvingia gabonensis (O’Rorke) Baill. 6.527385 9.219975 

162 Irvingia gabonensis (O’Rorke) Baill. 6.519540 9.190793 

163. Irvingia gabonensis (O’Rorke) Baill. 6.524315 9.276280 
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164. Irvingia gabonensis (O’Rorke) Baill. 6.508624 9.291230 

165. Irvingia gabonensis (O’Rorke) Baill. 6.520563 9.277653 

166. Irvingia gabonensis (O’Rorke) Baill. 6.510671 9.290013 

167. Irvingia gabonensis (O’Rorke) Baill. 6.510330 9.270787 

168. Irvingia gabonensis (O’Rorke) Baill. 6.539664 9.222035 

169. Irvingia gabonensis (O’Rorke) Baill. 6.554672 9.231991 

170. Irvingia gabonensis (O’Rorke) Baill. 6.557401 9.195599 

171. Irvingia gabonensis (O’Rorke) Baill. 6.519625 9.278340 

172. Irvingia gabonensis (O’Rorke) Baill. 6.508710 9.291043 

173. Irvingia gabonensis (O’Rorke) Baill. 6.531826 9.272847 

174. Irvingia gabonensis (O’Rorke) Baill. 6.527811 9.268384 

175. Irvingia gabonensis (O’Rorke) Baill. 6.510756 9.289326 

176. Irvingia gabonensis (O’Rorke) Baill. 6.347936 9.320569 

177. Irvingia gabonensis (O’Rorke) Baill. 6.352713 9.330546 

178. Irvingia gabonensis (O’Rorke) Baill. 6.376256 9.311986 

179. Irvingia gabonensis (O’Rorke) Baill. 6.360220 9.326748 

180. Irvingia gabonensis (O’Rorke) Baill. 6.379327 9.314389 

181. Irvingia gabonensis (O’Rorke) Baill. 6.382739 9.322972 

182. Irvingia gabonensis (O’Rorke) Baill. 6.364314 9.328122 

183. Irvingia gabonensis (O’Rorke) Baill. 6.383933 9.315075 

184. Irvingia gabonensis (O’Rorke) Baill. 6.386322 9.334817 

185. Irvingia gabonensis (O’Rorke) Baill. 6.384957 9.315934 

186. Irvingia gabonensis (O’Rorke) Baill. 6.396045 9.316964 

187. Irvingia gabonensis (O’Rorke) Baill. 6.391781 9.332928 

188. Irvingia gabonensis (O’Rorke) Baill. 6.384274 9.328637 

189. Irvingia gabonensis (O’Rorke) Baill. 6.385298 9.316964 

190. Irvingia gabonensis (O’Rorke) Baill. 6.401846 9.322800 


