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Abstract 

Increasing the presence of mercury (Hg) and Arsenic (As) in aquatic ecosystems as two unnecessary 

and dangerous elements in the environment has raised many concerns worldwide. This research 

aimed to evaluate associated risks of Hg and As in four fish species (Lethrinus crocineus, Otolithes 

ruber, Rhabdosargus haffara, and Epinephelus coioides) that are generally consumed by the people 

residents on the Coast of the Oman Sea in Iran. The maximum of the mean Hg and As concentrations 

were 0.38 ± 0.014 and 0.94 ± 0.124 µg g-1 wet weight (ww) for Orange-spotted grouper 

(Epinephelus coioides), respectively. Target hazard quotient (THQ) values of Hg for Epinephelus 

coioides and Tiger tooth croaker (Otolithes ruber) were higher than 1 for children and adult groups, 

but all THQ values of As were below one. The lifetime cancer risk (CR) for inorganic As was above 

10-5. Estimation of health risks of Hg and As showed that there are no consumption limits for 

children and adults due to the amount of As in fish tissue, but the consumption of Epinephelus 

coioides and Otolithes ruber for both children and adult groups indicated the potential risk for them. 
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Introduction 

Marine ecosystems are being polluted by the adverse effects related to the development of 

anthropogenic and industrial activities. Untreated depletion of wastewaters is among the significant 

origin of pollution in aquatic environments (Attaran-Fariman, 2010). High concentrations of toxic 

metals affect living organisms and create substantial environmental risks (Kortei et al., 2020). 

Research Article 

http://www.wildlife-biodiversity.com/


2 | Journal of Wildlife and Biodiversity 5 (3): 1-20 (2021) 

 

Increasing mercury (Hg) and Arsenic (As) levels in aquatic ecosystems as two unnecessary and 

dangerous elements in the environment, through natural and anthropogenic sources, has raised many 

concerns around the world (Wang et al., 2014; Okati & Esmaili-sari, 2018). The toxic elements exert 

their effects through various mechanisms, being chronic exposures at low doses of complex metal 

mixtures the responsible for the effects observed in wild animal populations and communities, with 

implications at the ecosystem level. Hg and As can be transported from plants to higher strata of the 

food chain, representing the threat to biodiversity and ecosystem integrity (Tovar-Sánchez et al., 

2018). The toxicity of these elements in the environment is due to their non-biodegradability and 

accumulation in various plant and animal tissues (Rahman et al., 2013). These pollutants are stored 

in aquatic animals' tissues, such as fish, and bioaccumulate in the marine ecosystem along the food 

chain (Giri & Singh, 2014). People can be exposed to Hg and As in the environment or through their 

food. Most of the Hg and As in the food referred to the fish consumption (Okati & Esmaili-sari, 

2018; Kortei et al., 2020). Higher bioavailability of Hg and As and higher biological half-life, as 

well as their potential to be accumulated in different parts of the body, make them serious 

contaminants, whose risks of toxicities in humans are one of the significant global public health 

concerns (Raissy & Ansari 2014, Kumari et al., 2016, Schneider et al., 2018). Mercury is a toxic, 

dangerous element that can severely impact the central nervous system (CNS) and kidney. It can 

also create deleterious effects on humans' respiratory and psychological issues (Gyimah et al., 

2018). The harmful health effects of As poisoning in humans are multiple. The impact of acute As 

toxicities include skin rash, toxic cardiomyopathy, abdominal pain, vomiting, and diarrhea 

(Ratnaike, 2003).  

The positive effect of fish meat on human health and its characteristics as a rich source of essential 

elements, amino acids, vitamins, and omega-3 (Silva et al., 2019) made them a healthier dietary 

food (Farrugia et al., 2015). Therefore, rigid national and regional standards should be applied to 

prevent the risk of such toxic elements in human diets through fish consumption (Shahbazi et al., 

2016). Many countries in the world evaluate the amounts of harmful ingredients in fish that are 

locally consumed to conserve their health. The European and Food Safety Authority (EFSA) 

established a range of benchmark doses between 0.3 and 8 μg per kg body weight (BW) per day for 

As (ESFA, 2009). Also, a potential total weekly intake (PTWI) of 5 μg per kg BW per week for 

total Hg has been set by the Joint Food and Agriculture Organization/World Health Organization 

Expert Committee on Food Additives (JECFA) (JECFA, 2014). The EFSA established the PTWI 

value for Hg of 1.6 µg per kg BW per week, which is sufficient to preserve the embryo and fetus 

from neurodevelopment hazard risk (ESFA, 2009).  

Various methods have been proposed to estimate the effects of carcinogenic and non-carcinogenic 

effects of different pollutants on human health by consuming polluted fish (Usese et al., 2017). The 

evaluation of health risk through Target Hazard Quotients (THQ) estimation methodology is an 

accurate and acceptable method initially proposed by the United States Environmental Protection 

Agency (USEPA), which has been cited by many researchers (Wang et al., 2005; Gu et al., 2017). 

Because there is limited information on the health risk assessment of fish consumption for fish 

species of the Oman Sea (Ziyaadini et al., 2017), and fish consumers commonly do not have 

sufficient information to select the healthy fish for their diets. Since fish is served as the primary 

food item for the people in the Oman Sea coastal area (including Iran and the other littoral countries 

of the Oman Sea), we compared the concentrations of Hg and As in fish species with the permissible 
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levels. We also aimed to evaluate associated risks of Hg and As in four fish species on the shorelines 

of the Oman Sea for adults and children in Iran. 

Material and methods 

Study area 

The Oman Sea (Fig.1) is a triangular strait situated between Iran, Oman, and Pakistan. It is 

surrounded by land on three sides and connected to the Indian Ocean high Sea on the other hand. 

The Strait of Hormuz joined it to the Persian Gulf. Between November 2018 and February 2019, a 

total of 51 samples from four commercially essential and highly consumed fish were analyzed. The 

selected species were Orange-spotted grouper, Epinephelus coioides; Tiger tooth croaker, Otolithes 

ruber; Stump nose, Rhabdosargus haffara, and Yellow tail emperor, Lethrinus crocineus, (Table 

1). Specimens were purchased from fishers and fish markets in Chabahar city located on the north 

coasts of the Oman Sea in Iran (Fig.1) and processed according to the USEPA guidelines (USEPA, 

2000). The total length and weight of the fish samples were recorded before cutting. The specimens 

were separately packaged in polyethylene bags with a numbered label and kept at four °C in portable 

refrigerators while they were transported to the laboratory. 

 

 

Figure 1. The map of the study area 

 

Sample preparation and analysis 

At first, fish samples were cleaned several times with deionized water, put in the polyethylene bags, 

and kept in a freezer at -20°C until experiment time (USEPA, 2000; Malakootian et al., 2016). 

Approximately 100 g of each sample's lateral-dorsal muscle was dissected, and then freeze-dried 

(Freeze dryer OPERON, Model; FDCF-12012) at -54 ͦ C for 24 h to make them thoroughly dried, 

and then were converted to powder using pounder (Okati & Esmaili-sari, 2018). The sample was 

weighed before and after freeze-drying. Then we calculated the moisture percentage of the muscle 

tissues. All containers used were washed with dilute nitric acid, distilled water, and dried, 

respectively.  

Table 1. Sampled fish species and biometric characteristics of fish 
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Species name 

n 

The total 

weight(g) 

Mean±SE 

Total Length(cm) 

Mean±SE Common name Scientific name 

Orange-spotted grouper Epinephelus coioides 10 1750.0±54.26 69.90±0.98 

Yellowtail emperor Lethrinus crocineus 15 1020.8±50.1 30.75±0.92 

Tiger tooth croaker Otolithes ruber 12 1250.0±33.7 36.91±1.25 

Stump nose Rhabdosargus haffara 14 1078.6±77.1 32.64±1.42 

 

For Arsenic measurement, about one gram of the dry tissue sample (muscles) was precisely weighed 

and digested with six ml of concentrated HNO3 65% (Merck, Darmstadt, Germany) and left at room 

temperature for 12 hours. Then, we added four ml of H2O2 30% (Merck) to it. The polyethylene 

tubes were placed on a digestive apparatus at 80 °C for 3 hours and a temperature of 150 °C for 

digestion (Liu et al., 2018; Salgado-Ramírez et al., 2017). After completing the digestion procedure, 

the solution was filtered using Whatman filter paper 42 and polyethylene funnel in a 25-ml balloon. 

Finally, using deionized water, the volume of the solution was diluted to 25 ml. Using a HP-4500 

(made in the USA) equipped with the Asus-520 Autosampler, the amount of Arsenic was read at 

the wavelengths of 193.7 nm using ICP-MS. Then, the concentration of As calculated using the 

following Eq. (1) (Okati et al., 2020): 

M =
(C×V)

𝑤
× A           (1) 

M: concentration of As (μg g-1), C: concentration of the device (μg l-1), V: final volume of the sample 

in l (0.125), W: prototype weight for acid digestion (g), and A: dilution factor 

In fish muscle tissue's inspection regarding the Arsenic remainings, the concentration of total 

mercury (THg) in the sample is measured rather than methyl mercury (MeHg) because of the more 

costly MeHg analyses in comparison of THg. It is admitted that in the health risk assessment 

experiments, 100% of THg is supposed to be MeHg In this way, caution is taken (Health Canada, 

2007; Doke & Gohlke, 2014; Garrigues, 2015). So, in this study, we have measured THg 

concentration in muscle tissue of fish samples. To detect the Hg amount, about 0.03 to 0.05 g dry 

weight of each sample was placed in the mercury analyzer's nickel boat. LECO AMA 254 Advanced 

Mercury Analyzer (USA), as stated in ASTM, standard no. D 6722, at a wavelength of 253.7 nm, 

was applied to analyze Hg in the studied samples. Detection of Hg in samples using LECO AMA 

254 is without sample pretreatment or sample pre-concentration (Okati & Esmaili-sari 2018; 

Khoshnood et al., 2012).   

Quality control 

The standard solutions were provided from stock solutions (Merck, multi-element standard). We 

replicated measurements three times for Hg and As. The accuracy and precision of the obtained 

concentrations were compared by inspecting the certified reference material (CRM, Dorm 2) 

prepared from the dogfish muscle, National Research Council, Canada. Analytical quality control 

(AQC) for the determination of As and Hg in fish muscles are summarized in table 2. Our results 

demonstrated that there was good communication among certified and analytical data. The used 

Standard Reference materials (SRM) for checking the accuracy of the Hg analysis were three 

samples of the National Institute of Standard and Technology (NIST) (NIST 1633b, NIST 2709, & 

NIST 2711a) (Okati & Esmaili- sari, 2018). The percent of Recovery for Hg was in the range of 

98.7 to 103.6%. The detection limits (LOD) for Hg and As were obtained 0.001 and 0.01 µg g-1 of 



5 | Journal of Wildlife and Biodiversity 5(1): 1-20 (2021) 

 

 

dry weight, respectively. The reproducibility of the methods was examined by the three times 

detection of 10% of the samples. The coefficient of variation of Hg and As ranged between 0.05-

2.5% and 1-4.2%, respectively. 

 

Table 2. Results of analytical quality control for the determination of As and Hg (data as means in µg g-1 dry 

weight) 

Element Reference Material Certified Observed1 SD2 Recovery (%) 

Arsenic CRM-DORM3-2 0.065 0.069 0.009 94.2 

Mercury 

NIST4-1633b 0.141 0.138 0.015 103.6 

NIST-2709 1.400 1.412 0.146 99.1 

NIST-2711a 7.420 7.511 0.419 98.7 
1 Each value is the mean of 10 analysis.; 2 Standard Deviation; 3 Certified Reference Material -Dogfish muscle; 4 National Institute of Standard and 

Technology 

 

Human health risk through fish consumption 

The health risk assessment, as stated by the levels of As and Hg through human consumption of 

fish, was estimated using the target hazard quotient (THQ) and Cancer Risk (CR) according to the 

USEPA guideline (USEPA, 2011). The THQ, which displays the risk of non-carcinogenic effects, 

implicates non-obvious risk. If the THQ is lower than one (THQ<1), it is unlikely that person will 

experience evident adverse effects during a person's lifetime, and if THQ>1, there is a potential 

health hazard (Taweel & Ahmad, 2013; Traina et al., 2019). The equation for estimating THQ was 

as follows (Eq. 2): 

THQ =
MC×IR×10−3×𝐸F×ED

RfD×BW×AT
         (2) 

Where, MC: The mean As and Hg concentration in fish species (µg g−1, ww) 

IR: Ingestion rate (g day−1) = 29.23 g day-1 (AFS, 2010). In this study, an IR for children was 

assumed to equal 60% of IR for adults = 17.53; BW is body weight (70 kg for adults and 32 kg for 

children) (USEPA, 2009). 

EF: exposure frequency (365 days year-1) 

ED: Exposure duration (adults: 70 years; children: 10 years) (USEPA, 2011)  

RfD: reference dose (µg g−1 day−1); (1×10-4 μg g-1day-1 for Hg and 3×10-4 μg g-1day-1 for As) 

(USEPA, 2011) 

BW: body weight  (kg); (adults: 70 kg; children: 32 kg) 

AT: Averaging time, non-carcinogens (day year−1) = (365×ED) (USEPA, 2011) 

Because people are usually exposed to more than one pollutant with combined or synergistic effects 

(Li et al., 2013; Traina et al., 2019), the total target hazard quotient (TTHQ) was estimated as the 

sum of the THQi amounts (Eq. 3): 

𝑇𝑇𝐻𝑄 = ∑𝑇𝐻𝑄𝑖          (3) 

International Agency for Research into Cancer (IARC) classified Arsenic as a carcinogenic element. 

To assess the possibility for an individual to develop cancer over a lifetime, as a result of exposure 
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to this potential carcinogen, the lifetime cancer risk (CR) was calculated. It was estimated with Eq. 

(4) (USEPA, 2010):  

CR =
MC×IR×EF×ED×CSF

BW×AT
          (4) 

CSF: Cancer Slop Factor 

Since CSF (μg g-1 day-1) is the oral carcinogenic slope factor from the Integrated Risk Information 

System (IRIS) (USEPA, 2010), CSF values are presented only for Arsenic (1.5 μg g-1 day-1). As so 

long, the amount is higher than 10-5, and it shows the chance greater than one over 100,000 of an 

individual of expanding cancer (USEPA, 2014). AT for carcinogenic effects is 70 years × 365 days 

year-1 (Vieira et al., 2011; Traina et al., 2019). It is incorrect to estimate THQ for total Arsenic since 

the oral RfD set by the USEPA is for inorganic As only. Hence, we determined the risk factors 

(THQ, CR, and CRlim) for the inorganic Arsenic, assuming that 3% of the total arsenic concentration 

is the inorganic form (Vieira et al., 2011; ESFA, 2012; Martinez-Gomez et al., 2012; Copat et al., 

2015; Traina et al., 2019).  

The maximum allowable concentration rate per day CRlim (Kg day-1) is calculated according to the 

concentration of contaminants stored in the muscle of fish (Eq. 5) set by the USEPA. It was 

estimated for adult, and children with an age of 10 years old (32 kg BW) (USEPA, 2000):  

𝐶𝑅𝑙𝑖𝑚 =
𝑅𝑓𝐷×𝐵𝑊

𝐶𝑚
          (5) 

Also, CRlim (Kg day-1) can be applied to estimate the maximum allowable fish consumption rate per 

month (CRmm) with Eq. (6) (USEPA, 2000): 

𝐶𝑅𝑚𝑚 =
𝐶𝑅𝑙𝑖𝑚×𝑇𝑎𝑝

𝑀𝑆
          (6) 

Tap: time averaging period (365 days per year and 30.44 days per month) 

MS: meal size (0.227 kg for adult and 0.136 kg for children) 

 

Statistics 

All statistical analysis was carried out using the SPSS software packages, version 17.0. Hg Mercury 

and As concentrations were tested for normality by the Kolmogorov-Smirnov test. Data were 

normality distribution.  Levene's test showed the homogeneity of variances. So, the analysis of 

variance one way ANOVA with Tukey posthoc test was performed to survey differences between 

group means of fish species for significance (P<0.05). Linear regression with Pearson's correlation 

analysis was conducted to assess the relationship between metals concentrations and each fish 

species' length. 

 

Results 

The mean Hg and As concentrations in the fish muscles are summarized in Table 3. The lowest and 

highest of the mean ± SE for Hg and As concentrations in sampled fish were obtained for Lethrinus 

crocineus (Hg: 0.05 ± 0.010 µg g-1 ww; As: 0.15 ± 0.017 µg g-1 ww),  Otolithes ruber (Hg: 0.26 ± 

0.021 µg g-1 ww; As: 0.80 ± 0.062 µg g-1 ww), Rhabdosargus haffara (Hg: 0.10 ± 0.014 µg g-1 ww; 
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As: 0.19 ± 0.029 µg g-1 ww),  and Epinephelus coioides (Hg: 0.38 ± 0.014 µg g-1 ww; As: 0.94 ± 

0.124 µg g-1 ww), respectively. The results of statistical analysis showed that there is a significant 

difference between the concentration of Hg between all fish species (p<0.001) (Fig. 2a). Also, the 

mean As concentrations of As in Epinephelus coioides and Otolithes ruber were significantly (p< 

0.001) higher than Lethrinus crocineus and Rhabdosargus haffara (Fig. 2b). The comparison of Hg 

and As concentrations in fish species to the maximum standard level of JECFA and USEPA safety 

level showed in Fig. 2 (a, b).  In this study, the mean Hg concentrations in all fish species did not 

increase the recommended maximum standard level of JECFA for Hg in fish (0.5 µg g-1 ww). 

According to the USEPA safety level of 0.3 µg g -1 ww (USEPA, 2009; Vahabzadeh et al., 2013), 

only the mean Hg concentration of Epinephelus coioides (0.38 ± 0.014 µg g-1 ww) was exceeded 

from this level (Fig. 2 (a)).  Although the mean concentration of As in Epinephelus coioides (0.94 

± 0.124 µg g-1 ww) was not exceeded than the JECFA standard level for As in fish (1 µg g-1 ww) 

(JECFA, 2014), but As levels were higher than this level in some of the samples of Epinephelus 

coioides (n = 4) (Fig. 2 (b)). Linear regression showed that the relationship between Hg 

concentrations with fish length was significant for all fish species (Fig. 3). The significant positive 

correlations were seen between Hg concentrations with fish length for Epinephelus coioides (r = 

0.61; p = 0.03), Otolithes ruber (r = 0.61; p = 0.03), Rhabdosargus haffara: (r = 0.61; p= 0.03), and 

Lethrinus crocineus: (r = 0.61; p = 0.03), respectively (Fig. 3). In contrast, there was no significant 

correlation between As levels in muscle tissue and the length of fish species (Fig. 3). 

 

Figure 2. The comparison of Hg and As concentrations in intra fish species and international standards in 

fish (µg g-1, ww) (JECFA, 2014; USEPA, 2011) 

 

THQ values of Hg for Epinephelus coioides and Otolithes ruber were higher than 1 for children and 

adult groups, but all THQ values of As were below than 1 (Table 4). TTHQ amounts were higher 

than 1 in Epinephelus coioides and Otolithes ruber for children and adult groups (Table 4). The 

CRAs values were found to range between 5.2 ×10-9 for Lethrinus crocineus (for children) to 1.7 × 

10-7 for Epinephelus coioides (for adults) (Table 4). The human health risks assessments due to the 

usage of Hg and As contents polluted fish are given according to CRlim and CRmm for the two groups 

of population (children and adults) in Table 5. According to Hg concentration in fish species, the 

minimum and maximum allowable consumption rates were obtained for Epinephelus coioides for 

children (0.008 kg day-1 ~ 1.8 meals month-1), and Lethrinus crocineus for adults (0.140 kg day-1 ~ 

18.7 meals month-1), respectively. According to As levels in fish, the minimum and maximum 

allowable consumption rates were obtained for Epinephelus coioides for children (0.34 kg day-1 ~ 
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76 meals month-1) and Lethrinus crocineus for adult (4.66 kg day-1 ~ 625 meals month-1), 

respectively.  

 

Table 3. The results of measuring the mercury and arsenic concentrations in (µg/g, ww) in fishes of Oman 

Sea 

Taxon 
Mercury concentration Arsenic concentration 

Mean Minimum Maximum a SE b SD Mean Min. Max. SE SD 

Epinephelus 

coioides 
0.38 0.32 0.44 0.014 0.044 0.94 0.24 1.65 0.124 0.392 

Lethrinus 

crocineus 
0.05 0.01 0.12 0.010 0.033 0.15 0.03 0.25 0.017 0.068 

Otolithes 

ruber 
0.26 0.10 0.38 0.021 0.072 0.80 0.56 1.23 0.062 0.215 

Rhabdosargus 

haffara 
0.10 0.04 0.21 0.014 0.053 0.19 0.03 0.38 0.029 0.111 

a SE: Standard Error of Mean; b SD: Standard Deviation; c Min.: Minimum; d Max: Maximum 

 

Table 4. THQ, TTHQ and CR for each analyzed metals in different fish species for children (C) and adult 

(A) groups  

Scientific name 
THQ Hg THQ As TTHQ CR As 

C A C A C A C A 

Epinephelus coioides 2.08 1.58 0.051 0.039 2.13 1.62 3.3E-08 1.7E-07 

Lethrinus crocineus 0.27 0.20 0.008 0.006 0.28 0.21 5.2E-09 2.8E-08 

Otolithes ruber 1.42 1.08 0.043 0.033 1.46 1.11 2.8E-08 1.5E-07 

Rhabdosargus haffara 0.54 0.41 0.010 0.007 0.55 0.42 6.7E-09 3.5E-08 

 

Discussion 

Hg and As levels in fish species 

In this study, 51 individual fish caught from the Oman Sea were studied for Hg and As contents in 

muscle tissues. The mean concentrations of Hg in fish species were summarized in table 3.  The 

mean concentrations of Hg and As in fish species followed E. coioides> O. ruber> R. haffara> L. 

crocineus. 

 

Table 5. CR Lim (kg day-1) and CR mm (meals month-1) for mercury and Arsenic in different fish species for 

children and adult groups 

Scientific name 

CR Lim CR mm 

Mercury Arsenic Mercury Arsenic 

Ca Ab C A C A C A 

Epinephelus coioides 0.008 0.018 0.34 0.74 1.8 2.4 76 99 

Lethrinus crocineus 0.064 0.140 2.13 4.66 14.3 18.7 477 625 

Otolithes ruber 0.012 0.027 0.4 0.87 2.7 3.6 89 117 

Rhabdosargus haffara 0.032 0.07 1.68 3.6 7.1 9.3 376 494 
a: Children; b: Adult 

 

The comparison of Hg and As concentrations in fish species to the maximum standard level of 

JECFA and USEPA safety level showed in Fig. 2 (a, b). In this study, the mean Hg concentrations 

in all fish species did not increase the recommended maximum standard level of JECFA for Hg in 

fish (0.5 µg g-1 ww). According to the USEPA safety level of 0.3 µg g -1 ww (USEPA, 2009; 
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Vahabzadeh et al., 2013), only the mean Hg concentration of Epinephelus coioides (0.38 ± 0.014 

µg g-1 ww) was exceeded from this level (Fig. 2 (a)).  Although the mean concentration of As in 

Epinephelus coioides (0.94 ± 0.124 µg g-1 ww) was not exceeded than the JECFA standard level for 

As in fish (1 µg g-1 ww) (JECFA, 2014), but As levels were higher than this level in some of the 

samples of Epinephelus coioides (n = 4) (Fig. 2 (b)).  According to standard values of Hg and As in 

fish, it might be a health hazard about the concentration of Hg, and As in Epinephelus coioides 

caught off the Oman Sea. The great concern about the Hg and As toxicity in humans is related to 

low levels of Hg and As in their diet linked to the potential neurotoxicity of MeHg and acutely toxic 

of As in both children and adults (Authman et al., 2015). 

The comparison of the Hg and As concentrations (µg g-1 ww) in fish of Oman Sea with other 

researchers showed in Table 6. However, in our study, the Hg levels of 4 four studied fish species 

were lower than other studies (Storelli et al., 2005; Al‐Reasi et al., 2007; Saei-Dehkordi et al., 2010; 

Martinez-Gomez et al., 2012; Alina et al., 2012; Kortei et al., 2020) or even higher than others (Fu 

et al., 2010; Thiyagarajan et al., 2012; Traina et al., 2019). Also, in this study, the As levels were 

below than other researches (Shah et al., 2009; Julshamn et al., 2012; Leung et al., 2014; Traina et 

al., 2019; Ranjbar Vakil Abadi et al., 2015), and they were higher than other studies (Fu et al., 2010; 

Raissy & Ansari, 2014; Leung et al., 2014; Alina et al., 2012; Martinez-Gomez et al.,, 2012; Storelli 

et al., 2005; Ranjbar Vakil Abadi et al., 2015; Kortei et al., 2020). Mercury and As levels are 

different in various studies. Its reason might be related to other factors, such as modality nature and 

intensity of pollution, alkalinity, water pH, temperature, the physiology of the studied fishes, body 

weight and age, habitat, trophic level, and also the period of the study (Raissy & Ansari 2014; Kortei 

et al., 2020). 

There was a significant difference of Hg (p < 0.001) between all fish species using one way ANOVA 

test (Fig. 2a). Hg concentration in E. coioides significantly higher than O. ruber, R. haffara, and L. 

crocineus. As contents in E. coioides and O. ruber were significantly (p < 0.001) higher in 

comparison with R. haffara, and L. crocineus (Fig. 2b). The differences of toxic metals 

concentrations such as Hg and As in fish species could be the result of the different habitats and 

ecological factors such as environmental requirements, metabolic regulations, growth, breeding, 

food supply, and environmental situations, feeding patterns, behavior, and the bio-concentration 

capacity of fish species, and period of study (Rozon-Ramilo et al., 2011; Monikh et al., 2013; Traina 

et al. 2019). Thus, the variations in levels of total As between the fish species and between 

individuals within a specific fish species could result from the different factors, such as the 

variability of As in the prey existing for the fish (Julshamn et al., 2012). Atobatele and Olutona 

(2015), showed the significant differences in As concentrations of fish species from Aiba Reservoir, 

Iwo, Nigeria. Today, it has become clear that feeding is the leading way to intake Hg, especially 

MeHg, in aquatic animals (Borgå et al., 2012). MeHg can easily store within animals' tissues at 

significantly higher concentrations than its concentration in the water and the sediments in the 

marine ecosystem (Beltrame et al., 2010). Fish species at high trophic levels generally have more 

Hg levels in their tissues than fish that locate in the low food levels (Vieira et al., 2011, Lavoie et 

al., 2013). In this study, all sampled fish were carnivores, and E. coioides had the highest Hg and 

As concentrations than other studied fish species. An increase of Hg and As concentrations in E. 

coioides have usually been ascribed to its habitat and feeding pattern. These fish species tend to be 

near the sediment region (Bahnasawy et al., 2009; Elnabris et al., 2013). Mirzaei et al. (2016) 
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demonstrated the heavy metals present in water and sediments of the Oman Sea along the Chabahar 

coast might be due to discharging the sewage directly into a nearby body of water, discharged wastes 

from factories and industrial zone, chemicals of industrial effluent and products of ship and boats. 

 

Relationships between Hg and As concentrations with fish length 

The results of linear regression showed that the relationship between Hg concentrations with fish 

length was significant for all fish species (Fig. 3). The significant positive correlations were seen 

between Hg concentrations with fish length for Epinephelus coioides (r = 0.61; p = 0.03), Otolithes 

ruber (r = 0.61; p = 0.03), Rhabdosargus haffara: (r = 0.61; p= 0.03), and Lethrinus crocineus: (r = 

0.61; p = 0.03), respectively (Fig. 3). The highest correlation was recorded for E. coioides. In 

contrast, there was no significant correlation between As levels in muscle tissue and the length of 

fish species (Fig. 3). While Besada et al. (2006), could not find any correlation between the size of 

fish and the As concentration, but Miloškovic and Simić (2015), reported the higher significant 

correlation among total As the level in muscle tissue and fish size (correlation coefficient= 1.00; p 

< 0.05) of pike. Also, Milačič et al. (2017) found no As bioaccumulation in some fish species. They 

reported As the level in fish muscle to a large extent reflects As the level in water-soluble. According 

to De Gieter et al. (2002), and Copat et al. (2015), interspecies differences in As concentrations of 

fish are related to their available food and the reality that As is metabolized and does not show to 

biomagnify along the food chain. The size of aquatic animals plays an important role in metal 

amounts of fish tissues (Dang & Wang, 2012). The correlation between metal levels and the fish 

length was widely explored and generally reported as positive (Monsefrad et al., 2012; Yi & Zhang, 

2012; Noël et al., 2013), and sometimes, negative (McKinley et al., 2012; Tekin-Özan et al., 2012; 

Merciai et al., 2014; Traina et al., 2019). The length has been introduced as a variable to which Hg 

levels are well correlated with some fish species because of the bioaccumulation of Hg in muscular 

tissues all over their life (Burger et al., 2007; Vieira et al., 2011).  

 

Assessment of human health risks 

According to Table 4, the maximum and minimum THQ for Hg were obtained for Epinephelus 

coioides (THQ=2.08) for children and Lethrinus crocineus (THQ=0.20) for adults. Observation of 

Hg THQ greater than 1 for Epinephelus coioides and Otolithes ruber for both children and adult 

groups indicated a potential risk for consumers. In contrast, As THQ values were lower than 1. Also, 

THQ of As were within the 0.006 (Lethrinus crocineus) for adults to 0.051 (Epinephelus coioides) 

for children. Thus, the obtained THQ of As does not show any possible non-carcinogenic risk for 

consumers. Because exposure to further than one pollutant may result in a combined effect (Storelli, 

2008), TTHQ was calculated for each species. This study's TTHQ values were higher than 1 for 

Epinephelus coioides and Otolithes ruber for both children and adult groups. It also indicates the 

significant health risks for Iranian consumers by using these two fish species. Usese et al. (2017) 

reported that except for populations with high fish consumption, the THQ was lower than 1 

(guideline value of USEPA) for all fish species in a tropical open lagoon, Southwest-Nigeria. The 

annual per capita fish consumption in Iran is reported about 10-11 kg per person (AFS, 2010). This 

value increases significantly in residents in the coastal communities (Okati & Esmaili-sari, 2018). 

Therefore, there is an additional risk of non-carcinogenic health consequences due to increased fish 

consumption rates.  
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Figure 3. The relationship between metals concentrations (As and Hg) and length for each fish species. 

Statistically, significant differences are indicated in bold. 

 

The carcinogenic risk obtained from the intake of As was also estimated because this element may 

develop both non-carcinogenic and carcinogenic effects related to the exposure dose. Inorganic 

Arsenic is categorizing in USEPA Group A, a known carcinogen (USEPA, 2010). The lifetime 

cancer risk (CR) for inorganic Arsenic in all four fish species is more than 10 -5 (Table 4). Thus, 

there is no health-threatening concern for inorganic As due to the consumption of studied fish 

species of Oman Sea, according to 29.23 g day-1 fish consumption for adults in Iran. 

Alamdar et al. (2017) also reported the people who frequently consume fish from the river Chenab 

were exposed to As pollution with carcinogenic (10−4 to 10−6), and non-carcinogenic (THQ>1) risks, 

especially from the intake of Cirrhinus reba. Also, Yi et al. (2017) demonstrated HQ values < 1, 

which showed no toxic health effects of heavy metals for people were discovered through everyday 

fish consumption from the Yangtze River in China. Again, the TTHQ of 1.659 obtained by them 

exceeded one because people might be exposed to non-carcinogenic health risks from the aggregate 

effect of heavy metals they studied. The findings of Zhong et al. (2018) displayed the levels of heavy 

metals in freshwater fish from both central and eastern North China were low and did not cause 

major people health risks. 

Table 6. Comparisons of the Hg and As concentrations (µg/g, ww) in fish of Oman Sea with other researches 

Location Fish species Hg levels As levels Reference 

Mediterranean Sea Thunnus thynnus (Mean: 1.53) (Mean: 0.10) Storelli et al (2005) 
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Gulf of Oman (between 

Oman and Iran) 
Different Species 0.003–0.76 - Al-Reasi et al. (2007) 

Manchar Lake and Indus 

River (Pakistan) 
Different species - 2.11-14.1 Shah et al. (2009) 

Hunan (China) Different Species 0.0027-0.243 0.009-0.152 Fu et al. (2010) 

Persian Gulf (Iran) Different species 0.12-0.52 0.15-0.83 Saei-Dehkordi et al. (2010) 

The Straits of Malacca 

(Malaysia) 
Psettoddes erumei 1.7 and 3.7 0.59 and 1.06 Alina et al. (2012) 

Norwegian waters Different species - 0.3-110 Julshamn et al. (2012) 

Mediterranean Sea, Spain Mullus barbatus Mean: 17.70 Mean: 0.09 
Martinez-Gomez et al. 

(2012) 

Southwest Coast, India Lutjanus russelli Mean:0.09 - Thiyagarajan et al (2012) 

Pearl River delta, China 
Lutjanus griseus 

Lutjanus stellatus 
 

(Mean: 1.53) 

(Mean: 0.36) 
Leung et al (2014) 

Persian Gulf (Iran) Different Species 
0.049-0.402 

(Mean: 0.133) 

0.168-0.479 

(Mean: 0.312) 
Raissy & Ansari (2014) 

Persian Gulf (Iran) 

Otolithes ruber 

- 

0.27-0.46       

(Mean: 0.36) Ranjbar Vakil Abadi et al. 

(2015) Scomberomorus 

guttatus 

0.83-1.63      

(Mean: 2.93) 

Mediterranean Sea (Sicily 

Channel), Sciacca, Italy 

Sardina 

pilchardus 
Mean: 0.11 Mean: 7.86 Traina et al. (2019) 

Ankobrah and Pra Rivers, 

Ghana 

Pra River, Ghana 

Clarias 

anguillaris 
(Mean: 0.40) (Mean: 0.04) 

Kortei et al. (2020) 

Oreochromis 

niloticus 
(Mean: 0.40) (Mean:0.04) 

Clarias 

anguillaris 
Mean:0.48 (Mean: 0.04) 

Oreochromis 

niloticus 
(Mean: 0.60) (Mean: 0.04) 

Oman Sea (Iran) 

Epinephelus 

coioides 

0.32-0.44      

(Mean: 0.38) 

0.24-1.65      

(Mean: 0.94) 
This study 

Lethrinus 

crocineus 

0.01-0.12       

(Mean: 0.05) 

0.03-0.25       

(Mean: 0.15) 
 

Otolithes ruber 
0.10-0.38      

(Mean: 0.26) 

0.56-1.23      

(Mean: 0.80) 
 

Rhabdosargus 

haffara 

0.04-0.21       

(Mean: 0.10) 

0.03-0.38       

(Mean: 0.19) 
 

 

Consumption of fish is always recommended due to its high protein values, vitamins, beneficial 

mineral compounds, and unsaturated fatty acids (PUFA) (Storelli, 2008). But the presence of 

pollutants such as Hg and As in the edible tissue of fish can reduce the benefits of consuming this 

useful food (Chan & Egeland, 2004). To estimate the non-cancerous effects, the maximum 

allowable fish consumption rate per day (CRLim) has been assessed for Hg and As in all four fish 

species (Table 5). The maximum permissible fish consumption rate per month (CRmm) is also 

estimated to assess how many meals of these four fish species of the Oman Sea can be consumed 

securely without undesirable non-cancerous effects per month (Table 5). According to Hg 

concentration in fish species, the minimum and maximum allowable consumption rates were 

obtained for Epinephelus coioides for children (0.008 kg day-1 = 1.8 meals month-1) and Lethrinus 

crocineus for adults (0.140 kg day-1 ~ 18.7 meals month-1), respectively. According to As levels in 

fish, the minimum and maximum allowable consumption rate were obtained for Epinephelus 

coioides for children (0.34 kg day-1 ~ 76 meals month-1) and Lethrinus crocineus for adults (4.66 kg 

day-1 ~ 625 meals month-1), respectively. In other studies, the restrictions on fish consumption for 

some population groups have also been reported by other researchers. For example, Mozaffarian 
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and Rimm (2006), reported the advantages of the modest fish consumption (1–2 meals week-1) for 

women of childbearing age to reduce the possible hazards due to Hg exposure in fish. Also, the 

maximum allowable concentration rate per day for an adults with mean 71.5 kg BW, was 55 and 93 

g day-1 based on Hg and As concentrations, fish caught off the Persian Gulf, respectively (Raissy & 

Ansari, 2014). According to USEPA guideline for pollutants in fish, there is no consumption limit 

for CRmm > 16 meals month-1 (USEPA, 2009). In this study, only the obtained CRmm for Hg in 

Lethrinus crocineus for adults was more than 16 meals per month but for other fish species 

(Epinephelus coioides, Otolithes ruber and Rhabdosargus haffara) were less than 16 meals for 

adults and children groups. The obtained CRmm for As in all four fish species was more than 16 

meals per month. It was indicated there is no consumption limit for all fish species, according to As 

levels in fish muscles. 

 

Conclusion 

The main facet assessing Hg and As levels in fish species is their toxicity to humans. Fish 

consumption has various health advantages, and fish has been known as an essential pathway of 

exposure to Hg and As. This work was a risk assessment research about the selective fish from the 

Oman Sea, Iran. Observation of THQ for Hg, and TTHQ greater than one for Epinephelus coioides 

and Otolithes ruber caught off the Oman Sea for both children and adult’s groups indicated the 

potential risk. In this study, there is no consumption limit for Hg in Lethrinus crocineus for adults, 

but for other fish species (Epinephelus coioides, Otolithes ruber, and Rhabdosargus haffara) must 

be considered consumption limits for children and adult’s groups. The obtained CRmm for As in all 

four fish species showed that it is safe for adults and children. The correlation between Hg 

concentrations and length of fish species showed the bioaccumulation of Hg in muscle tissue 

throughout their life. Health risks of pollutants can also vary for different populations depending on 

their frequency and fish consumption rate. So, other pollutant levels of more fish species and other 

seafood in this region should be monitored, and potential health risks must be assessed periodically. 

Consumers must be knowledgeable both about the benefit and hazard of fish consumption. Hence, 

minimizing health risks and raising the advantage of seafood consumption will be feasible. 
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