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Abstract 

Global climate change has had a significant impact on biodiversity and altered the geographical 

distribution of many plant species. In this study, ensemble modeling based on seven species 

distribution models was used to predict the effect of climate change on the spatial distribution of 

Crataegus azarolus L. in Chaharmahal-Va-Bakhtiari province, located in the Central Zagros region, 

Iran. We used 113 presence points of the species and physiographic, land cover, and bioclimatic 

variables. Predicting the geographical distribution of the C. azarolus in the future (years 2050 and 

2070) was made based on four scenarios of the increase in the greenhouse gases (RCPs: 

Representative Concentration Pathways) in the general circulation model of MRI-CGCM3. Based 

on the results, about 20% (3292.192 km2) of the study area can be considered as the suitable habitat 

of C. azarolus. Precipitation Seasonality, Isothermality, and Mean Temperature of the Wettest 

Quarter had the highest contribution to the species distribution model. The decline of suitable 

habitats will be 31.13% to 89.87% by 2050 and 2070 due to climate change, respectively. 

Assessments showed that the Random Forest was found to be the most reliable model for species 

prediction. Our results can provide reliable information on preparing adaptive responses for the 

sustainable management of the species. 
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Introduction 

Environmental factors, particularly air temperature and water availability, have considerable 

influences on the distribution of species (Fortunel et al., 2014). Global climate change has had a 

significant impact on biodiversity and altered the geographical distribution of many plant species 

(Kosanic et al., 2018). Extinctions  at the lower  elevation limit, shifts in geographic distribution, and 
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range contractions of plant species may be the result of changes in the natural patterns of temperature 

and precipitation. These patterns of changes are among the expected effects of future climate change 

(Zomer et al., 2015; Ladányi et al., 2015). One of the most difficult challenges faced by conservation 

planners is adapting these shifts to effectively conserve biodiversity in the context of climatic 

regimes (Watson et al., 2012). 

To elucidate the specific effects of climate change on species and reduce the negative impacts of 

climate change on ecosystems and biodiversity, we should integrate conservation strategies with 

species distribution modeling to identify suitable habitats (Kumar, 2012; Akhter et al., 2017; Guisan 

& Zimmermann, 2000). Species Distribution Models (SDMs) are applied to predict the spatial 

distribution of species from field data and environmental variables (Guisan & Zimmermann, 2000). 

In these models, the response variable is mainly the presence and absence of the species, and the 

predictor variables are environmental parameters, and the relationships between the variables are 

presented as mathematical functions. When climate change is due to a particular scenario, these 

statistical relationships are considered constant and are used as a hypothesis to determine changes 

in species distribution (predicting future conditions) (Guisan et al., 1998).  We can use a range of 

SDM algorithms to predict the potentially suitable habitats for plant species (Tarkesh & Jetschke, 

2016). The choice of a specific model may be complex; hence, an alternative is to run different 

modeling methods on the same dataset and for the same initial geographic area of analysis. It is then 

possible to compare the results to select the approach giving the most consistent results in terms of 

objectives or to combine the various results into one ultimate model. BIOMOD is a platform for an 

ensemble forecasting of species distributions that overcomes the uncertainties caused by different 

models and thus allows the study of species relationships with the environment (Thuiller et al., 

2016). 

Iran is one of the most important countries in the Middle East for biodiversity. Iranian ecosystems 

include 8000 plant species (Farashi et al., 2017). The forests of the Zagros are vital in terms of water 

conservation and climate change and are, therefore, important in the socio-economic balance of the 

whole country. Remarkable decline and dieback in Zagros forests (mostly Quercus brantii) have 

occurred in recent years and each day increases (Bashari et al. 2016). Also, this issue in other trees 

like Crataegus has occurred. One of the most important reasons for this might be a change within 

the climatic factors over a brief period (Attarod et al., 2016).  

The genus Crataegus relates to the family Rosaceae; it contains about 280 species of deciduous 

spiny shrubs and little trees (Hyam & Pankhurst, 1995). This genus is distributed throughout the 

northern temperate regions, including North America, Europe, and Asia. Crataegus azarolus L. is 

a tree with a small round crown that is about 6 m high, primarily, growing on rocky mountainsides 

(Sagheb-Talebi et al., 2014). 

The genus Crataegus L. is largely applied in the food industry while it can also be used for 

landscaping goals. Because it can grow in sandy, stony, shallow, and dry soils; can help with erosion 

control efforts. This genus is very valuable for different purposes, including food, medicinal, 

ornamental, and as a shelter for wildlife, soil conservation applications, and erosion control 

(Ahmadloo et al., 2015).  

A few studies showed precipitation and temperature have played the most important role in the 

habitat suitability of the Crataegus genus. For example, Jafari et al. (2019) determined the potential 

habitat for Crataegus azarolus in Chaharmahal-va-Bakhtiari Province, Iran. They concluded that 

elevation, mean relative humidity and average annual rainfall have the greatest effects on the 
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geographical distribution of this species. In another, similar study Rafiee et al. (2020) investigated 

the current potential distribution of Crataegus pontica in Lorestan Province. They concluded that 

the geographical distribution of the species is affected by Precipitation of the Coldest Quarter, 

Annual Precipitation, and elevation. 

Many studies have been conducted on the effect of climate change on the distribution of shrub and 

tree species (Ahn et al., 2015; Blach-Overgaard et al., 2015; Périé & de Blois, 2016; Shirk et al., 

2018; Rajpoot et al., 2020). For example, Moustafa et al. (2019) reported a steady decline of habitat 

quality for Crataegus sinica over recent years. This decrease observed in this species is probably 

due to climate change over the past few decades and human activities. Also, several studies have 

predicted the effects of climate change on the geographical distribution of tree species in Iran 

(Haidarian et al., 2017a; Alavi et al., 2019; Naghipour et al., 2019a; Taleshi et al., 2019). These 

studies predict that future climate change (by 2050 and 2070) will significantly reduce the suitable 

habitat of different species. 

The present study aimed to evaluate the effects of climate change on the geographical distribution 

of C. azarolus located in the Central Zagros. This study was conducted to accomplish the subsequent 

objectives: 1) to determine  the most important environmental factors, which affect the distribution 

of the study species; 2) to spot suitable habitats and determine the geographical distribution of C. 

azarolus in the Central Zagros under the current climate; 3) to predict the results of climate change 

by 2050 and 2070 under different scenarios on the geographical distribution of C. azarolus. 

 

Materials and Methods 

Study area 

Our study area includes Chaharmahal-va-Bakhtiari Province with an area of 16,532 km2 in the 

central Zagros. This area is mostly mountainous, with dominating elevations over 2000 m and 

altitudes between 783 and 4178 m above sea level (asl). Annual rainfall varies between 250 mm in 

the east and southeast and 1400 mm in the northwest of the province. The average rainfall in the 

province is 560 mm. The average annual temperature of the province is 10 °C (Jaafari et al., 2017). 
 

Occurrence data 

Field studies were included to record the occurrence points across the study area between 2019 and 

2020 with Global Positioning System (GPS). To reduce spatial autocorrelation, duplicate 

occurrence, less than one kilometer away, was removed. We used 113 occurrences points of C. 

azarolus for modeling (Fig. 1). 
 

Bioclimatic and environmental data 

Physiographic, land cover and bioclimatic variables were used as predictors of C. azarolus 

distribution. Bioclimatic variables derived from temperature and precipitation (Bio1-Bio19) and the 

digital elevation model layer (DEM) were received in downscaled with an accuracy of 30 arc- 

seconds (~1 km) from the Worldclim database (www.worldclim.org). The digital elevation model 

(DEM) was used to generate physiographic variables including slope and aspect. Land cover data 

were used that extracted from a map produced by the Iranian Forests, Ranges, and Watershed 

Management Organization (IFRWMO, 2014). 

All environmental layers became similar in terms of spatial accuracy, dimensions, and geographic 

coordinate system in the ArcGIS 10.3 (ESRI Inc., http://www.esri.com/) environment. Before 

http://www.worldclim.org/
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modeling, Pearson’s correlation analysis (R2 <0.8) and variance inflation index (VIF <3) were used 

to examine the collinearity between different environmental variables (Zuur et al., 2010). Finally, 

after removing the highly correlated layers, nine variables were used in distribution modeling (Table 

1). The importance (%) of  each environmental variable in the distribution modeling is  shown in 

Table 1.  
 

Table 1. The importance (%) of each environmental variable in the models for studying C. azarolus 

geographic distribution is shown.  

Abbreviations Variables Relative importance Unite 

Bio15 Precipitation Seasonality (Coefficient of 

Variation) 

60.74 dimensionless 

Bio3 Isothermality (BIO2/BIO7) (* 100) 14.05 dimensionless 

Bio8 Mean Temperature of the Wettest Quarter 11.10 °C 

Bio17 Precipitation of the Driest Quarter 4.84 mm 

Bio12 Annual Precipitation 3.73 mm 

Bio4 Temperature Seasonality (standard 

deviation *100) 

2.78 °C 

Land use/Landcover - 1.39 dimensionless 

slope Slope 1.09 % 

aspect Aspect 0.28 degree 

 

Modeling 

We used an ensemble model approach to model C. azarolus distribution  within the BIOMOD2 

(Thuiller et al. 2016) in R v. 3.1.2 (R Development Core Team, 2014). Ensemble methods were 

applied to forecast C. azarolus distribution including the Generalized Linear Model (GLM), 

Maximum Entropy (MaxEnt), Artificial Neural Network (ANN), Flexible Discriminant Analysis 

(FDA), Generalized Boosting Method (GBM), Multivariate Adaptive Regression Splines (MARS), 

and Random Forest (RF).  

Since all models used require background data (such as pseudo-absence points), the number of 

background points equal to the species presence points in the study area was randomly generated 

outside the presence cells (Senay et al., 2013). Pseudo-absence points were prepared in the desired 

area and at a distance of one kilometer from each other (Arenas-Castro et al., 2018).  

To calibrate the models, 80% of the presence points were used as training data, and the remaining 

20% to evaluate the predictions of the models. We repeated this split-sample procedure ten times. 

Representative concentration pathways (RCPs: 2.6, 4.5, 6, and  8.5) and general circulation model 

MRI-CGCM3  were used to predict the future distribution of C. azarolus in the years 2050 and 2070. 

The consensus probability map, which shows suitable habitats for C. azarolus in response to current 

environmental conditions, was calculated using the averaging of predictions made by different 

algorithms (Marmion et al., 2009).  

The performance of the models was evaluated using the true skill statistic (TSS) and the area under 

the receiver operating curve (AUC). AUC is a measure of overall accuracy, independent of threshold 
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and prevalence (Manel et al., 2001), and TSS is independent of prevalence (Allouche et al., 2006). 

Based on receiver operating characteristic (ROC) criteria, we found the essential levels of predictor 

variables to divide habitats into two classes: suitable habitats and unsuitable habitats (Sangoony et 

al., 2016) and used differences in each class to produce habitat suitability maps. The approach 

suggested by Hessl et al., (2007) was used for the evaluation of AUC values: AUC < 0.7 (poor); 0.7 

<AUC < 0.9 (moderate); and AUC > 0.9 (good). The  approach suggested by Eskildsen et al. (2013) 

was used for the evaluation of TSS values: TSS > 0.75 (very good); 0.40 < TSS < 0.75 (good); and 

TSS < 0.40 (poor). 

  

Results 

All models used in this study attained an AUC > 0.89 and TSS > 0.65, showing good prediction 

accuracy (Table 2). The Random Forest (RF) algorithm provides the highest accuracy values (AUC 

= 0.99 and TSS = 0.98) (Table 2).  

 

Table 2. Estimated values of the true skill statistic (TSS) and the area under the curve (AUC) were 

implemented in different models. 

Average RF GLM MaxEnt ANN GBM FDA MARS Model 

0.94 0.99 0.89 0.93 0.95 0.98 092 0.92 AUC 

0.7 0.98 0.65 0.88 0.83 0.88 0.69 0.69 TSS 

 

The relative contribution of environmental variables to the  distribution models is shown in Table 1. 

Our results clearly showed that Precipitation Seasonality (60.74%), Isothermality (14.05%), and 

Mean Temperature of the Wettest Quarter (11.10%) had the largest contribution to the species 

distribution models. 
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Figure 1. The ensemble map of current habitat suitability for C. azarolus 
 

According to the ensemble model, 19.91% (3292.19 km2) of the study area is currently suitable 

habitat for the C. azarolus (Fig. 1). The findings reveal the southern, central, and western parts of 

the province are the most  suitable habitat for C. azarolus. The response curves indicate the species 

occurs in the habitats with a Precipitation Seasonality (bio15) of 88 mm to 100 mm, an Isothermality 

(bio3) of 34 to 37.7, and a Mean Temperature of the Wettest Quarter (bio8) between 0 to 4.8°C (Fig. 

2).  

Our results suggest that climate change can adversely affect the current distribution of C. azarolus. 

The results of all RCPs scenarios reveal an average increase of unsuitable habitats for C. azarolus 

by years 2050 and 2070 (Fig. 3 and 4). As illustrated in Fig. 3 and Fig. 4 dark green denotes nearly 

no changes in C. azarolus habitat distribution (habitat remained suitable), light green denotes an 

increase in suitable habitat areas (turned to suitable habitat), and red denotes a decrease in suitable 

habitat regions (turned to unsuitable habitat). The reduction of suitable habitats for C. azarolus will 

be 31.13% (RCP 2.6) to 89.87% (RCP 8.5) due to future climate change by 2050 and 2070 (Table 

3). While in the same period, about 1.9% to 12.91% will be added to the suitable habitats of this 

species (unsuitable habitats will become suitable) (Fig. 3 and 4, and Table 3).  
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Figure 2. Probability of C. azarolus presence along effective variables based on the Random Forest (RF) 

model in Chaharmahal va Bakhtiari province 

 

Table 3. Changes in the area of suitable habitats (km2) of C. azarolus by 2050 and 2070 compared to the 

current distribution under different climatic scenarios and the  MRI-CGCM3 model. 

Year/Scenario 

Remained 

unsuitable 

(km2) 

Remained 

suitable 

(km2) 

Habitat 

loss 

(km2) 

Habitat 

loss (%) 

Habitat 

gain 

(km2) 

Habitat 

gain (%) 

Habitat 

change 

(%) 

MRI-CGCM3        

2050        

RCP2.6 2267.32 12814.92 1024.87 31.13 424.89 12.91 -18.22 

RCP4.5 1954.51 12950.40 1337.68 40.63 289.37 8.79 -31.84 

RCP6 1627.05 13028.10 1665.14 50.58 211.71 6.43 -44.15 

RCP8.5 1316.44 13058.13 1975.75 60.01 181.68 5.52 -54.5 

2070        

RCP2.6 1429.60 11865.26 1862.59 56.58 1374.56 10.38 -46.19 

RCP4.5 971.13 12767.28 2321.06 70.50 427.53 3.57 -66.93 

RCP6 432.17 12962.31 2860.02 86.87 277.51 2.1 -84.74 

RCP8.5 333.40 12988.26 2958.79 89.87 251.56 1.9 -87.97 
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Figure 3. Changes in the suitable habitats of C. azarolus from current to future climatic conditions (2050) 

resulting from the ensemble model and based on the MRI-CGCM3 model with four RCP scenarios: (a) 

RCP2.6, (b) RCP4.5, (c) RCP6, and (d) RCP8.5 
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Figure 4. Changes in the suitable habitats of C. azarolus from current to future climatic conditions (2070) 

resulting from the ensemble model and based on the MRI-CGCM3 model with four RCP scenarios: (a) 

RCP2.6, (b) RCP4.5, (c) RCP6, and (d) RCP8.5 

 

Discussion 

Predicting the current and future distributions of species is essential for developing management 

strategies to maintain future suitable habitats (Porfirio et al. 2014). For this purpose, the species 

distribution modeling (SDM) is one of the essential tools to determine habitat suitability (Guisan et 
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al., 2013), species demands, and ecological conservation (Jarvis & Robertson, 1999), as well as for 

recognizing biodiversity patterns (Williams & Hero, 2001).  

In this study, we performed the modeling of current and future (2050 and 2070) distributions of C. 

azarolus using the  ensemble approach, including seven species distribution models algorithm in 

Central Zagros. Our results, consistent with Jafari et al. (2019), indicate that southern, central, and 

western parts of the study area are the most important habitats for C. azarolus. The findings of the 

present study revealed that about 31% to 90% of currently suitable habitats of C. azarolus will 

become unsuitable due to climate change by 2050 and 2070. The foretold decline in the suitable 

habitats of this species was consistent with the results of other studies in the Central Zagros and 

Central Iran (Sangoony et al., 2016: Bromus tomentellus; Haidarian et al., 2017a: Quercus brantii; 

Naghipour et al., 2019a: Pistacia atlantica; Naghipour et al., 2019b: Fritillaria imperialis; Tarkesh 

& Jetschke, 2016: Astragalus adscendens; Amiri et al., 2019: Artemisia sieberi and Abolmaali et 

al., 2018: Daphne mucronata). 

Nevertheless, the rate of such changes has accelerated significantly due to climate change, in which 

human communities play an important role. Humans have an important impact on changes in the 

natural environment, especially vegetation patterns, and are mainly responsible for habitat loss and 

species distribution (Ibáñez et al., 2014). 

Furthermore, the suitable areas for C. azarolus were projected to shift towards higher elevations at 

an average of about 190 m in 2070. The effect of climatic conditions (rainfall and temperature) on 

the habitat of C. azarolus, which makes the lower elevation unsuitable for this species, is the reason 

for this shift (Al-Qaddi et al., 2016; Ashrafzadeh et al., 2019a; Attorre et al., 2011; Hodd et al., 

2014). Our results indicate RCP8.5 could lead to a more severe impact on the distribution of C. 

azarolus than the other scenario. This was predictable given the intensity of climate change in this 

scenario. Consequently, the benefits of such species for human well-being are likely to decline in 

the future, and ecosystem services may be negatively affected (Arslan et al., 2020). 

In this study, the SDMs applied have focused on macroecology (i.e., physiographic and climate 

variables). The SDM algorithms commonly involve some uncertainty resulting from climate models 

and available climatic data (Wang et al., 2012). It should also be emphasized that Climatic variables 

aren’t only environmental variables influencing the species distribution, but also edaphic and 

biological variables that can affect the distribution of species. Therefore, a study on physiological 

plasticity is crucial to refining predictions about the impacts of changing climate on species 

distribution. The mechanism of seed dispersal, the presence of different plant and animal species, 

and human activities (e.g. invasive species, fire, and ecotourism) can also affect the spatial 

distribution of the target species (Holtmeier, 2009). However, it is important to emphasize that when 

modeling the species distribution in a large geographical area, the climate is usually the most 

important determinant of species presence (Pearson & Dawson 2003), and provides basic data on 

habitat suitability for the species (Marino et al., 2011).  

Our results, inconsistent with other studies, indicate that precipitation seasonality (Kumar & 

Stohlgren, 2009;  Uğurlu & Oldeland, 2012; Rajpoot et al., 2020), Isothermality (Arslan et al., 2020; 

Yang et al., 2013), and mean temperature of the wettest quarter (Xu et al., 2009; Jarnevich & 

Reynolds, 2011) are among the most important variables influencing the spatial distribution of 

different plant species. 

Seasonal rainfall changes control the annual growth cycle (phenology) of plants, including shoot 

growth (vegetative growth), flowering, and leaf fall in trees (Borchert, 1994a, b) and synchronize 
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tree phenology in forests and to some extent (Borchert, 1998). The precipitation seasonality has an 

important role in the response to forests to climate variability (Borchert, 1998). Additionally, 

measuring the precipitation seasonality is critical to setting the soil capacity to obtain water stock to 

be utilized by plants (Kosmas et al. 1999). Species distributions can be heavily influenced by 

variability in precipitation, precipitation seasonality presents a percentage of precipitation 

variability where greater percentages indicate higher variability of precipitation. (O’Donnel & 

Ignizio, 2012). According to the response curves, C. azarolus occurs in all types of habitats  with a 

precipitation seasonality of 88 mm to 100 mm. Amiri & Mesgari (2009) reported that the central 

and southern parts of the study area had the highest precipitation seasonality. 

 Isothermality quantifies how large the day-to-night temperatures oscillate relative to the summer to 

winter oscillations (O’Donnel & Ignizio, 2012). Based on results C. azarolus occurs in habitats with 

Isothermality values of 34 to 37. So this value indicates the habitat where the diurnal temperature 

range for C. azarolus is 34%-37% of the annual temperature range. Mean temperature of wettest 

quarter gives mean temperatures throughout the most humid three months of the year, which can be 

valuable for considering how such environmental factors may affect species seasonal distributions 

(O’Donnel & Ignizio, 2012). Results showed that C. azarolus occurs in habitats with a mean 

temperature of the wettest quarter (winter in the study area) between 0 to 4.8°C. Based on the results, 

the RF model had the highest accuracies (AUC: 0.99, TSS: 0.98). This algorithm is an efficient 

method for modeling the species distribution (Cheng et al., 2012; Haidarian et al., 2017b; Mi et al., 

2017; Ashrafzadeh et al., 2019b; Naghipour et al., 2019b). Due to its non-parametric nature, the RF 

algorithm is flexible in using different explanatory variables and can show nonlinear relationships 

between response variables and explanatory variables as well as hierarchical interactions between 

explanatory variables (Henderson et al., 2014).  

Conclusion 

Species distribution modeling is an efficient predictive tool that helps to identify the conservation 

and restoration priority areas over time. In this study, the potential distribution of C. azarolus under 

the current and future climatic conditions was successfully modeled. The species is one of the major 

tree species in central Zagros of Iran and it is reported to have medicinal and soil protection values. 

Our results revealed that the distribution  of C. azarolus in Zagros forests would be radically 

influenced by future climate change. It is suggested that the predicted effects of climate change 

should be considered for the conservation and management strategies of C. azarolus communities 

in the Zagros forest area. A high conservation priority area is the predicted suitable habitat that 

is occupied by the target species. The restoration areas are the modeled suitable area that has not 

been occupied by the species, where is likely to gain a suitable habitat under future climatic 

conditions. This study can provide reliable information on preparing adaptive responses for the 

sustainable management of the species. 
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