

Journal of Wildlife and Biodiversity 2(1): 19-35 (2018)

by Arak University, Iran (http://jwb.araku.ac.ir/)

DOI: 10.22120/jwb.2018.30117

Research Article

New insight into the phylogeny of the orchid bees (Apidae: Euglossini)

Taghi Ghassemi-Khademi

Department of Biology, Faculty of Sciences, University of Shiraz, Shiraz, Iran Email: t.ghassemi@shirazu.ac.ir

Received: 5 December 2017 / Revised: 17 Jaunuary 2018/ Accepted: 8 February 2018 / Published online: 21 February 2018. Ministry of Sciences, Research and Technology, Arak University, Iran.

Abstract

Orchid bees occur across the American continent, from the southern United States to Paraguay and northern Argentina. There are 240 described species of orchid bees. The phylogeny of these bees has been studied by several researchers. In most cases, phylogenetic trees with different topologies have been introduced, because the tree topology of the orchid bees is very unstable. In this work, using consisting of 244 gene sequences three mitochondrial genes (cytochrome b. cytochrome c oxidase I, and 16S ribosomal RNA) and a single nuclear gene (RNA polymerase II), the phylogenetic relationships within the tribe Euglossini were re-evaluated. Although we cannot describe the phylogenetic tree of the tribe Euglossini with confidence vet; I found that there are probably two distinct evolutionary pathways or two distinct evolutionary lineages in this tribe. Moreover, I found that the evolutionary pathway of the genus Euglossa is probably different from other genera belonging to the tribe Euglossini. Nevertheless, definite viewpoints on this matter need more studies.

Keywords: Euglossini, *Euglossa*, phylogeny, new insight, distinct lineages.

Introduction

The orchid bees are classified as under phylum: Arthropods, Class: Insects. Order: Hymenoptera, Sub-order: Apocrita, Infera-Apoidea. Acuelata, Super-family: order: Family: Apidae, Subfamily: Apinae, and Tribe: Euglossini (Michener 2007; Ghassemi-Khademi 2016). The orchid bees are only corbiculate apines (pollen basket bees) that do not exhibit large colonies and may rather be solitary, communal, semisocial, or social (Ramírez et al. 2002). These honeybees occur across the American continent, from the southern United States of America to Paraguay and northern Argentina, where they can make up to 25% of bee communities in Neotropical wet forests (Ferronato et al. 2017). Female orchid bees collect nectar, pollen, and resin fornest construction brood-cell and provisioning, while male bees collect perfume compounds from floral and nonfloral sources and use them during courtship display for attracting conspecific females (Brand et al. 2017).

The highest diversity of the orchid bees belongs to Amazon basin, in South America (Ferronato *et al.* 2017). There are 240 described species of orchid bees (Moure *et al.* 2012; McCravy *et al.* 2016) with medium to large sizes (8.5-29.0 mm length) distributed in five current genera: *Eufriesea*, *Euglossa*, *Eulaema*, and two cuckoo genera, *Aglae* (in nests of the genus *Eulaema*) and *Exaerete* (in nests of the genera: *Eulaema* and *Eufriesea*)(O'Toole and Raw 2004; Ramírez *et al.* 2002; Michener 2007; Carvalho-Filho and Oliveira 2017).

Except for the genus *Aglae*, which is known from South America and eastern Panama, each genus in this tribe ranges from Mexico to

Argentina, mostly in the moist forests (Michener 2007). Recently, the bees of this tribe have received serious attention in particular because they are very effective pollinators of nearly 700 orchid species, which is the main reason for calling them "orchid bees" (Fernandes *et al.* 2013). In addition, this tribe contains some of the most colorful and gaudy bees, many of which are metallic green, blue, and bronze or purple (O'Toole and Raw 2004). Probably, the tribe Euglossini has a common ancestry with the tribe Bombini (the bumblebees) (O'Toole and Raw 2004).

Meanwhile, phylogeny of corbiculate bees, especially the orchid bees (as a member of the corbiculate bees), have been studied by several researchers (Bembé 2007; Darveau et al. 2005; Roig-Alsina and Michener 1993; Schultz et al. 1999, 2001; Noll 2002; Michel-Salzat et al. 2004; Brand et al. 2017; Fernandes et al. 2013; Kawakita et al. 2008; Engel 1999; Ramírez et al. 2010; Penha et al. 2014). Each of these studies has introduced phylogenetic trees with different topologies because the tree topology of the orchid bees is very unstable. In this work, using the nucleotide sequences of three mitochondrial genes (cytochrome b, cytochrome c oxidase I, and 16S ribosomal RNA) and a single nuclear gene (RNA polymerase II), specially the submitted gene sequences in gen bank recently, I re-evaluated the phylogenetic relationships within the tribe Euglossini and provided a theory about the phylogeny of the orchid bees. Although this theory is probably close to reality, definite viewpoints need more investigations on this matter.

Material and methods

All gene sequences including cytochrome b (n=87), cytochrome c oxidase I (n=55), RNA polymerase II (n=78), and 16S ribosomal RNA (or 16S rRNA) (n=24) genes (A total of 244 gene sequences) belonging to the tribe Euglossini were downloaded from NCBI (Tabs: 1, 2, 3, and 4). The sequences were

aligned with Mega6 (Tamura *et al.* 2013) using the Clustral W alignment method.

The evolutionary history was inferred using the Maximum Likelihood method for each of the studied genes separately. The trees were calculated with the highest log-likelihood. In all of the phylogenetic trees, the percentage of replicate trees, in which the associated taxa are clustered together in the bootstrap test (1000 replicates), were shown next to the branches (Felsenstein 1985).

In all above analyses, all positions containing gaps and missing data were eliminated. All the evolutionary analyses were computed using the Kimura 2-parameter method (Kimura 1980) and were conducted in MEGA6 (Tamura *et al.* 2013). Also, the robustness of clades was calculated by the bootstrap method. In this study, 50-60% was considered as a weak support (as bootstrap values), 61-75% as a moderate support, 76-88% as a good support, and \geq 89% as a strong support as values (Retrieved from Win *et al.* (2017), with minor modification).

In addition, Bayesian analyses of studied gene sequences were run with the parallel version of MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) on a Linux cluster with one processor assigned to each Markov chain under the most generalizing (GTR+G+I) model because overparametrization apparently does not negatively affect **Bayesian** analyses (Huelsenbeck and Ranala, 2004). Each Bayesian analysis comprised two simultaneous runs of four Metropolis-coupled Markov-chains at the default temperature (0.2). Analyses were converged terminated after the chains significantly, as indicated by the average standard deviation of split frequencies<0.01. inference phylogeny Bayesian of was conducted for 6,000,000 generations. In this study, 700 bootstrap replicates were used as ML branch support values. The posterior equal/higher probabilities than 0.95 and bootstrap supports equal/higher than 70% were considered support as strong values (Sayyadzadeh et al. 2016).

Table 1. The accession numbers of cytochrome b genes and scientific names of studied species from the tribe Euglossini (n=87) received from GenBank (www.ncbi.nlm.nih.gov)(n=89).

Species	Accession Numbers	Scientific Names	Accession Numbers
Eufriesea schmidtiana	AY916094	Euglossa flammea	AY916116
Eugloss aiopoecila	KF443107	Euglossa asarophora	AY916118
	KX249839	Euglossa allosticta	AY916119
	KX249852	Euglossa crassipunctata	AY916120
	KX249853	Euglossa dodsoni	AY916121
	KF443124	Euglossa gorgonensis	AY916122
_	KF443108	Euglossa allosticta	AY916119
-	KF443109	Euglossa crassipunctata	AY916120
-	KF443110	Euglossa dodsoni	AY916121
Euglossa townsendi	KF443111	Euglossa gorgonensis	AY916122
	KF443112	Euglossa allosticta	AY916119
-	KF443113	-	KF888747
-	KF443114		KF888751
	KF443115		KF888755
	KF443116		KF888756
	KF443117	Eulaema bombiformis	KF888753
-	KF443118	4	KF888815
Euglossa stellfeldi	KF443119	4	KF888816
	KF443120	4	
-	KF443121		
	KF443122	4	KF888818
	KF443123	4	KF888819
Euglossa imperialis	AF002730		KF888820
	AY916117	Eulaema meriana	KF888821
Euglossa dissimula	AY916100	4	KF888822
Euglossa hansoni	AY916101	4	KF888863
E dans hadanadida	A V016100		AF181614
Euglossa heterosticta	AY916102		KF895451
Euglossa analis	A Y 916103		KF895491
Euglossa Cogliata	A 1910104		<u>КГ093492</u> КЕ905402
Euglossa indentata	A 1910105	Eulaema cingulata	VE805404
Euglossa a pphiripa	A 1910100		KF805405
Euglossa despecta	A 1910107 A V016108		KF805511
Euglossa despecta	AV016100		A V916096
Euglossa uressieri Euglossa cybelia	ΔΥ916110	Fulsema nigrita	ΔΥ916095
Fuglossa maculilabris	AY916111	Fulaema speciosa	AY916097
Fuglossa decorata	AY916112	Evaluenta speciosa Evalerete smaragdina	AY916099
Fuolossa hursioera	AY916113		AY916098
Euglossa ignita	AY916114	Exaerete frontalis	AF002729
Euglossa chalvheata	AY916115	Eufriesea ornata	AY916093
	KU135609	Eufriesea venusta	AY916092
-	KU135608	Eufriesea rufocauda	AV016001
-	KU133006		A1910091
-	KU135607		AY916090
	KU135606	Eufriesea caerulescens	AF181613
Eulaema atleticana	KU135604	Apis dorsata	KP259252
	KU135629	Apis mellifera	EF184045
	KU135628	<u>r</u> •	
-	VII125607		
	KU153027		
	KU136206		

Table 2. The accession numbers of cytochrome c oxidase I (COX1) genes and scientific names of studied species from the tribe Euglossini (n=55) received from GenBank (www.ncbi.nlm.nih.gov)(n=59).

Species	Accession Numbers	Scientific Names	Accession Numbers
Aglae caerulea	EU163091	Euglossa iopoecila	KX250213
	EU421542		KX250207
	AY506458		KX250206
	AY506457		KX250205
Eufriesea ornata	KC313077		KX250203
Eufriesea atlantica	KC313076		KX250200
Eufriesea superba	KC313075		KX250198
	KC313074		KX250196
	KC313073		KX250193
	KC313072		KX250192
Enfricana nondestina	KC313071		KX250175
Eurresea nordesina	KC313070		KX250176
	KC313069		KX250173
	KC313068		KX250171
	KC313067		KX250165
Eufriesea nigrohirta	KC313065		KX250163
Eufriesea auriceps	KC313064	Eulaema peruviana	AJ581111
	KC313063	Eulaema polyzona	AJ581112
Eufriesea xantha	AJ581110	Eulaema polychroma	AJ581113
Eufriesea flaviventris	AJ581109	Eulaema meriana	AJ581114
Everata amora adina	KC313078	Eulaema speciosa	AJ581115
Exaerete smaragdina	AJ582625	Eulaema nigrita	AJ581116
	EU421542	Eulaema atleticana	KU134960
Aglae caerulea	AY506458		KU134955
	AY506457		KU134954
Ania danaata	KU752355		KU135003
Apis dorsata	KT960840		KU135002
Ania mallifana	KU874168		KU135000
Apis mellitera	KU874167		KU134999
			KU134991
			KU134984
			KU134985
			KU134986

Species	Accession Numbers	Scientific Names	Accession Numbers
Eufriesea magrettii	EU421303	Euglossa macrorhyncha	EU421321
Eufriesea pulchra	EU184723	Euglossa cordata	EU421297
Eufriesea anisochlora	EU421325	Euglossavariabilis	EU421232
Eufriesea macroglossa	EU421311	Euglossa tridentata	EU421320
Eufriesea corusca	EU421296	Euglossa bursigera	EU421319
Eufriesea mussitans	EU421294	Euglossa retroviridis	EU421317
Eufriesea violascens	EU421286	Euglossa villosiventris	EU421316
Eufriesea chalybaea	EU421285	Euglossa laevicincta	EU421274
	EU421283	Euglossa tridentata	EU421275
Eufriesea tucumana	EU421282	Euglossa hemichlora	EU421306
Eufriesea pulchra	EU421257	Euglossa obtusa	EU421304
Eufriesea violacea	EU421228	Euglossa dressleri	EU421298
Eufriesea lucida	EU421223	Euglossa erythrochlora	EU421295
Eufriesea concava	EU421216	Euglossa deceptrix	EU421293
Eufrieseac hrysopyga	EU421258	Euglossa analis	EU421292
Eufriesea rufocauda	EU421212	Euglossa rufipes	EU421291
Euglossa ioprosopa	EU421270	Euglossa azureoviridis	EU421288
Euglossa augaspis	EU421267	Euglossa imperialis	EU421284
Euglossa orellana	EU421263	Euglossa igniventris	EU421281
Euglossa cognata	EU421261	Euglossa fuscifrons	EU421279
Euglossa heterosticta	EU421252	Eugloss aturbinifex	EU421273
Euglossa sapphirina	EU421251	Euglossa chlorina	EU421272
Euglossa hansoni	EU421250	Euglossa flammea	EU421231
Euglossa championi	EU421249	Euglossa dodsoni	EU421234
Euglossa asarophora	EU421247	Euglossa truncata	EU421238
Euglossa crassipunctata	EU421246	Euglossa amazonica	EU421218
Euglossa piliventris	EU421244	Euglossa rugilabris	EU421217
Euglossa villosiventris	EU421242	Euglossa paisa	EU421213
Euglossa ignita	EU421241	Euglossa purpurea	EU421220
Euglossa flammea	EU421240	Eulaema mocsaryi	EU421254
Euglossa securigera	EU421239	Eulaema polychroma	EU421324
Euglossa cordata	EU421221	Eulaema chocoana	EU421323
Euglossa jamaicensis	EU421224	Eulaema sororia	EU421322
Euglossa parvula	EU421227	Eulaema nigrita	EU421300
Exaerete throcanterica	EU421313	Eulaema cingulata	EU421253
Exaerete dentata	EU421229	Eulaema meriana	GU245394
Exaerete smaragdina	EU421211	Eulaema bombiformis	EU421271
Bombus lapidarius	KF936151		
Aglae caerulea	EU162842		
	EU421289		
	GU245396		

Table 3. The accession numbers of RNA polymerase II genes and scientific names of studied species from the tribe Euglossini (n=78) received from GenBank (www.ncbi.nlm.nih.gov)(n=79).

Scientific Names	Accession Numbers	Scientific Names	Accession Numbers
Aglae caerulea	EU162926	Eulaema meriana	AF181585
	AJ581103		AJ581095
Eufriesea xantha	AJ581091	Eulaema boliviensis	DQ788139
Eufriesea flaviventris	AJ581090.1	Eulaema bombiformis	AJ581100
Euglossa iopoecila	KX155770	Eulaema mocsaryi	AJ581099
	KX155767	Eulaema cingulata	AJ581098
	KX155764	Eulaema speciosa	AJ581096
	KX155763	Eulaema polychroma	AJ581094
	KX155734	Eulaema polyzona	AJ581093
	KX155725	Eulaema peruviana	AJ581092
	KX155715	Exaerete azteca	EU162927
	KX155713	Exaerete smaragdina	AJ581101
		Aglae caerulea	AJ581103
		Bombus hypocrita	AF364824

Table 4. The accession numbers of 16S ribosomal RNA (or 16S rRNA) genes and scientific names of studied species from the tribeEuglossini (n=24) received from GenBank (www.ncbi.nlm.nih.gov) (n=25).

Results

As the results indicated, outgroups were separated from the tribe members in all of the phylogenetic trees (Figs. 1-8), implying the presence of relatively close genetic distances among tribe members. Also, in all of the phylogenetic trees, all species belonging to a single genus were clustered together. In addition, to show the accuracy of the phylogenetic analyzes, different genera of this tribe were demarcated precisely.

Based on the topology of Maximum Likelihood phylogenetic tree of Cytochrome b sequences, the relationship of different genera belonging to the tribe Euglossiniis is as follows:

[{Euglossa}+{Exaerete+(Eufriesea+Eulaema)

}]. So, the genus *Euglossa* is sistered to the other genera and we can distinguish two distinct major clusters in this tree. The results showed that all species belonging to the genus *Euglossa* have the high supported ML bootstrap (=82) and BI posterior probability (=78.64) values. In another cluster, three genera including *Exaerete*, *Eufriesea*, and *Eulaema* constructed a monophyletic group with very high BI posterior probability (=87.7) and weak (but acceptable) supported ML bootstrap (=51) values.

Moreover, based on the topology of Maximum Likelihood phylogenetic tree of 16S ribosomal RNA (16S rRNA) sequences, the relationship of different genera belonging to the tribe Euglossini is as follows:

$[\{(Eulaema) + Exaerete + Eufriesea + Aglae\} + \{E$

uglossa}]. So, the genus *Euglossa* is sistered to the other genera in this tree and we can distinguish two distinct major clusters; where all of the sequences belonging to the genus *Euglossa* showed good supported ML bootstrap (=77). In another cluster, four genera including *Exaerete*, *Eufriesea*, *Eulaema*, and *Aglae* built a monophyletic group with moderate (but acceptable) supported ML bootstrap (=62) and very strong BI posterior probability (=98.57) values.

Furthermore, based on the topology of Maximum Likelihood phylogenetic tree of Cytochrome c oxidase I (COX1) sequences, the relationship of different genera belonging to the tribe Euglossini is as follows:

[{(*Eufriesea*+*Exaerete*)+*Eulaema*}+{*Aglae*+*Eu glossa*}]. Hence, two genera of *Euglossa* and *Aglae* are sistered to the other genera and thus we can distinguish two distinct major clusters; where all of the species belonging to the two

Figure 1. Maximum Likelihood tree based on Kimura 2- parameter distance using Cytochrome b sequences; the numbers on each branch correspond to bootstrap support values. The tree was rooted with two *Apis* spp. sequences.

Figure 2. Maximum Likelihood tree based on Kimura 2- parameter distance using RNA polymerase II sequences; the numbers on each branch correspond to bootstrap support values. The tree was rooted with a single *Bombus lapidarius* sequences (percentages lower than 30 are not shown).

Figure 3. Maximum Likelihood tree based on Kimura 2- parameter distance using Cytochrome c oxidase I (COX1) sequences; the numbers on each branch correspond to bootstrap support values. The tree was rooted with four *Apis* spp. sequences (percentages lower than 30 are not shown).

Figure 4. Maximum Likelihood tree based on Kimura 2- parameter distance using 16S ribosomal RNA (16S rRNA) sequences; the numbers on each branch correspond to bootstrap support values. The tree was rooted with a single *Bombus hypocrita* sequences (percentages lower than 30 are not shown).

Figure 5. Bayesian phylogeny reconstructed based onbased on16S ribosomal RNA (16S rRNA) sequences. The values beside the branches are BI posterior probability values. The tree was rooted with a single *Bombus hypocrita* sequences.

Figure 6. Bayesian phylogeny reconstructed based on RNA polymerase II sequences. The values beside the branches are BI posterior probability values. The tree was rooted with a single *Bombus lapidarius* sequences.

Figure 7. Bayesian phylogeny reconstructed based onCytochrome c oxidase I (COX1) sequences. The values beside the branches are BI posterior probability values. The tree was rooted with four *Apis* spp. sequences.

Figure 8. Bayesian phylogeny reconstructed based on Cytochrome b sequences. The values beside the branches are BI posterior probability values. The tree was rooted with two *Apis* spp. sequences.

genera of *Euglossa* and *Aglae* showed a high supported ML bootstrap (=85) and BI posterior probability (=85.61) values. In another cluster, three genera including *Exaerete*, *Eufriesea*, and *Eulaema* constructed a monophyletic group with a high supported ML bootstrap (=94) and BI posterior probability (=92.61) values. The BI posterior probability values of two mentioned clusters were equal to 100.

Eventually, based on the topology of Maximum Likelihood phylogenetic tree of RNA polymerase II sequences, the relationship of different genera belonging to the tribe Euglossini is as follows:

[(*Euglossa*)+{(*Exaerete*+*Aglae*)+(*Eulaema*+*Eu friesea*)}]. In this tree, similar to the previous phylogenetic trees, the genus *Euglossa* is In all of the phylogenetic trees, the BI posterior probability value of two mentioned clusters was equal to 100; thus, it can be inferred that the tribe Euglussini is a monophyletic group with the highest BI posterior probability value. sistered to the other genera and we can distinguish two distinct major clusters; where all of the sequences belonging to the genus Euglossa showed very strong supported ML bootstrap (=98) and very strong BI posterior probability (=98.75) values. In another cluster, four genera including of Exaerete, Eufriesea, Eulaema, and Aglae constructed а monophyletic group with a very weak supported ML bootstrap (=33). Definitely, in this case, the topology of the Bayesian phylogenetic tree was slightly different from the topology of ML phylogenetic tree. However, as can be seen from Fig. 6, similar to the other trees, we can detect two different groups consisting of the genus Euglossa and other genera, clearly separated from each other.

Discussion

In this study, four gene fragments were used to evaluate the phylogenetic relationships among five genera of the orchid bees. As one of the first comprehensive studies on this subject, Kimsey (1987) evaluated generic relationships among the tribe Euglossini based on morphological characters. The relationships of different genera based on the topology of Kimsey's phylogenetic tree were as:

[{(*Euglossa+Exaerete*)}+{*Eufriesea* +(*Aglae+Eulaema*)}](Kimsey 1987)(Fig. 9).

Michener's tree based on morphological characters (1990) had the following phylogenetic relationships:

[*Exaerete+Euglossa+*{(*Eufriesea+Aglae+Eulae ma*)}](Michener 1990)(Fig. 9)

In another study, Engel (1999) depicted the phylogenetic tree of the tribe Euglossini based on cladistic analysis of 15 morphological characters. In this study, the generic relationships among orchid bees were as under:

[{(*Exaerete+Euglossa*)+*Eufriesea*}+{*Eulaema* +*Aglae*}](Engel 1999)(Fig. 9)

Elsewhere, Michel-Salzat et al. (2004), using 37 morphological characters and sequencing of two widely used mitochondrial genes (16S rDNA and COI) and two protein-encoding nuclear genes (long-wavelength rhodopsin, LWRh (also known as opsin), and the F2 copy of elongation factor-1a, EF-1a), presented the generic phylogenetic relationships among orchid bees as:

[((Eulaema+Eufriesea)+Euglossa+Exaerete)+A glae]

(Michel-Salzatet al. 2004) (Fig.9)

Also, Oliveira's phylogenetic tree based on morphological characters was exactly similar to the Michel-Salzat's tree (Oliveira 2006).

Darveau et al. (2005) used a single mitochondrial marker to infer the relationships within orchid bees. The topology of the phylogenetic tree in their study was as:

[(Euglossa)+{(Eufriesea+Eulaema)+Exaerete}

(Darveau et al. 2005)

Recently, Ramírez et al. (2010), used four loci of cytochrome oxidase (CO1), elongation factor 1-a (EF1-a), arginine kinase (ArgK), and RNA polymerase II (Pol-II) for evaluating the phylogenetic relationships within the tribe Euglossini (Fig. 10). In this study, the phylogenetic relationships of orchid bees based on the topology of combined Bayesian and combined parsimony phylogenetic trees were as:

[((*Euglossa+Aglae*)+*Eulaema+Eufriesea*)+*Exa erete*](Ramírez *et al.* 2010)(Fig. 10)

Among the five genera of Euglossini, the genus Euglossa is composed of six subgenera with about species based on external 122 morphological characters (Nemésio 2009; Ramírez et al. 2010), so this genus is the most diverse genus into the tribe Euglossini (Fernandes et al. 2013). This number may be much higher than the current number. Moreover, the taxonomy of this group is extremely complicated due to a large number of morphological similarities (Fernandes et al. 2013). The phylogeny of the genus Euglossa is still to be investigated (Michel-Salzat et al. 2004).

In a study, Fernandes et al. (2013) evaluated cytogenetically two species of the genus *Euglossa* including *Eu. Carolina* and *Eu. Townsend*. They reported that in the genus *Euglossa* other mechanisms might have caused karyotype evolution as individuals have a high number of chromosomes, higher than other bees species (Fernandes *et al.* 2013). In this genus, the chromosomes are large and present submetacentric morphology, which is contrary to the characteristics predicted in the theory of Minimal Interaction (Fernandes *et al.* 2013).

Figure 9. The generic relationships among orchid bees recovered in previous studies since 1982 to 2006 (retrieved from Ramírez *et al.* 2010).

Figure 10. The phylogenetic relationships among orchid bees using four different genes (Ramírez *et al.* 2010).

In another study, Darveau et al. (2005) sequenced a single mitochondrial gene (cytb) in four genera belonging to the tribe Euglossini (GenBank accession number AY916090-AY916122) (Darveau et al. 2005). They reported the cytb information places the Euglossa genus as the sister of the other genera (Darveau et al. 2005). Also, they emphasized, alternative methods of phylogenetic the inference and genetic distance methods yielded similar topologies with nodes with bootstrap values greater than 50% generally conserved (Darveau et al. 2005).

Overall, the tree topology of the orchid bees is unstable (Darveau et al. 2005), which make the introduction of phylogenetic trees with different topologies. Thus, in this scientific report, the results are presented with caution. Although we cannot describe the phylogenetic tree of the tribe Euglossini with confidence yet, I found that there are probably two distinct evolutionary pathways or two distinct evolutionary lineages in this tribe. Moreover, I found that the evolutionary pathway of the genus Euglossa is probably different from other genera belonging to the tribe Euglossini.

As mentioned, the genus Euglossa is the most diverse genus in the tribe Euglossini and the karyotypic evolution of this genus has a particular state different from other bees (Fernandes et al. 2013). Although, to make a conclusion definite about karyotype evolutionary pathways in these bees we must perform karyotype analyses in all the genera belonging to the tribe Euglossini, based on the results of present study, the results of Fernandes et al. (2013), and considering that the genus *Euglossa* is the most diverse genus into the tribe Euglossini (Nemésio 2009; Ramírez et al. 2010), the theory presented in this paper is likely to be close to reality. However, a definite conclusion needs more studies on this matter.

References

Bembe B. 2007. Revision der Euglossa cordata-Gruppe und Untersuchungen zur Funktionsmorphologie und Faunistik der Euglossini (Hymenoptera, Apidae). Entomofauna, Supplement, vol. 14, p. 1-146.

Brand P., Saleh N., Pan H., Li C., Kapheim K.M., Ramírez S.R. 2017. The nuclear and mitochondrial genomes of the Facultatively eusocial orchid bee *Euglossa dilemma*. G3 (Bethesda) 7(9):2891-2898.

Carvalho-Filho F., Oliveira F. 2017. Notes on the nesting biology of five species of Euglossini (Hymenoptera: Apidae) in the Brazilian Amazon. Entomo Brazilis 10(1): 64-68.

Darveau C.A., Hochachka P.W., Kenneth J., Welch C., Roubik D.W., Suarez R.K. 2005. Allometric scaling of flight energetics in Panamanian orchid bees: a comparative phylogenetic approach. Journal of Experimental Biology 208: 3581-3591.

Engel M.S. 1999. The first fossil *Euglossa* and phylogeny of the orchid bees (Hymenoptera: Apidae; Euglossini). American Museum Novitates 3272: 1–14.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Fernandes A., Werneck H.A., Pompolo S.G., Lopes D.M. 2013. Evidence of separate karyotype evolutionary pathway in *Euglossa* orchid bees by cytogenetic analyses. Anais da Academia Brasileira de Ciências 85(3): 937-944.

Ferronato M.C.F., Giangarelli D.C., Mazzaro D., Uemura N., Sofia S.H. 2017. Orchid bee (Apidae: Euglossini) communities in Atlantic forest remnants and restored areas in Paraná State, Brazil. Neotropical Entomologydoi: 10.1007/s13744-017-0530-2.

Griswold T., Herndon J.D., Gonzalez V.H. 2015. First record of the orchid bee genus *Eufriesea* Cockerell (Hymenoptera: Apidae: Euglossini) in the United States. Zootaxa 3957(3): 342–346.

Ghassemi-Khademi T. 2016. Taxonomy and comparative biology of world and Iranian honey bees (Volume 1), Jahad-e Daneshgahi Publication, Addabil branch, Ardabil, Iran.

Huelsenbeck J.P., Ranala B. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904-913.

Kawakita A., Ascher J.S., Sota T., Kato M., Roubik D.W. 2008. Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera:Apoidea: Apidae). Apidologie 39: 163–175.

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Kimsey L.S. 1982. Systematics of bees of the genus *Eufriesea* (Hymenoptera, Apidae). University of California Publications, Entomology 95: 1–125.

Kimsey L.S. 1987. Generic relationships within the Euglossini. Systematic Entomology 12: 63– 72.

McCravy KW., Van-Dyke J., Creedy T.J., Roubik D.W. 2016. Orchid bees (Hymenoptera: Apidae: Euglossini) of Cusuco National Park, State of Cortés, Honduras. Florida Entomologist 99(4): 765-768.

Michener C.D. 1990. Classification of the Apidae. University of Kansas Science Bulletin 54: 75–119.

Michener CD. 2007. The bees of the world (Second Edition). The Johns Hopkins University Press, Baltimore, United States of America, 972 p.

Michel-Salzat A., Cameron S.A., Oliveira M.L. 2004. Phylogeny of the orchidbees (Hymenoptera: Apinae:Euglossini): DNA and morphology yield equivalent patterns. Molecular Phylogenetics and Evolution 32: 309–323.

Moure J.S., Melo G.A., Faria L.R.R. 2012. *Euglossini Latreille*, 1802. In: Moure JS, Urban D, Melo GAR (orgs) Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region-online.

Nemesio A. 2009. Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest. Zootaxa (Auckland) 2041:1-242.

Noll F.B. 2002. Behavorial phylogeny of corbiculate Apidae (Hymenoptera: Apinae), with special reference to social behavior. Cladistics 18: 137–153.

O'Toole C., Raw A. 2004. Bees of the world. New York: Facts on File, 192 p.

Oliveira ML. 2006. New hypothesis of phylogenetic relationships for the genera of Euglossini, and for the species of *Eulaema Lepeletier*, 1841 (Hymenoptera: Apidae: Euglossini) (Hymenoptera: Apidae: Euglossini). Acta Amazonica 36: 273–286.

Penha R.E.S., Gaglianone M.C., Almeida F.S., Boff S.V., Sofia S.H. 2014. Mitochondrial DNA of *Euglossa iopoecila* (Apidae:Euglossini) reveals two distinct lineages for this orchid bee species endemic to the Atlantic Forest. Apidologie 46(3): 346–358.

Ramírez S.R., Roubik W.D., Skov C., Pierce N.E. 2010. Phylogeny, diversification patterns and historical biogeography of Euglossine orchid bees (Hymenoptera: Apidae). Biological Journal of the Linnean Society 100: 552-572.

Roig-Alsina A., Michener C.D. 1993. Studies of the phylogeny and classification of longtongued bees (Hymenoptera: Apoidea). The University of Kansas science bulletin. 55: 123– 173.

Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixedmodels. Bioinformatics 19: 1572-1574.

Sayyadzadeh G., Eagderi S., Esmaeili H. 2016. A new loach of the genus *Oxynoemacheilus* from the Tigris River drainage and its phylogenetic relationships among the nemacheilid fishes (Teleostei: Nemacheilidae) in the Middle East based on mtDNA COI sequences. Iranian Journal of Ichthyology 3(4): 236–250.

Schultz T.R., Engel M.S., Prentice M. 1999. Resolving conflict between morphological and molecular evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae): a hypothesis-testing approach. University of Kansas publications, Museum of Natural History Publication 24: 125–138.

Schultz T.R., Engel M.S., Ascher J.S. 2001. Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 74: 10–16.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-2729.

Win N.Z., Choi E.Y., Park J., Park J.K. 2017. Molecular phylogenetic relationship of the subfamily Nymphalinae (Lepidoptera: Nymphalidae) in Myanmar, inferred from mitochondrial gene sequences. Journal of Asia-Pacific Biodiversity 10:86-90.