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Abstract 
The vulture, an immensely invaluable service 

provider, has been reported to have plummeted 

to its lowest numbers in the recent past, causing 

serious concerns. Hence, a habitat study has 

become imperative for planning the 

conservation and recovery of this endangered 

species. Central India (Madhya Pradesh), one 

of the strongholds of the vulture and the study 

site, supports numerous vulture locations and 

individuals belonging to seven vulture species. 

MaxEnt based species distribution modeling 

was chosen for the prediction of habitat 

suitability, to identify the prediction-impacting 

environmental variables, and to compare the 

area expanse of different species.  Predicted 

potential habitat distribution maps of all 

vultures together and seven vulture species 

have been prepared. The performance accuracy 

of all the models was in a very high range 

(average AUC= 0.938).  Though 77% - 89% 

area is negligibly suitable to different species, 

Himalayan Griffon, Cinereous and Egyptian 

vultures had larger areas as compared to Long-

billed, Eurasian Griffon, White-rumped and 

Red-headed vultures. Out of 23 variables used 

in the modeling, landuse-land cover (forest and 

waterbody), isothermality, and precipitation 

seasonality were the prominent determinants of 

the distribution of all the species. Agriculture 

and elevation played a minimal role. The data 

generated in the study could be used for the 

planning of vulture recovery by conservation 

and reintroduction. The less suitable areas 

could also be used for the management of 

ecologically plastic species by modifying such 

landscape into agroforestry, including animal 

husbandry. 
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Introduction 

Vultures have been in peril in different parts of 

the world in general, and in the Indian 

subcontinent in particular, in the recent past 

(Garbett et al. 2018, McLure et al. 2018) to the 

extent that they are among the most threatened 

animal taxa in the world (Birdlife International 

2018, Ogada et al. 2012, Badia-Boher et al. 

2019). The ecological implications of vulture 

decline could be extensive because vultures 

consume substantial amounts of dead animal 

matter, without which the functioning of the 

ecosystem would be disturbed (Hill et al. 

2018). Several Indian provinces support 

vulture population, including Central India (CI 

≡ Madhya Pradesh), which is considered to be 

a vulture stronghold, being supportive of the 

maximum number of vulture locations, 

species, and individuals (Jha 2018). Out of 

nine vulture species reported in India (Ali and 

Ripley 1987, Jha 2015), only four species 

breed here, and three species spend time as a 

result of winter migration in CI (Jha 2017). 

The Indian Gyps vultures were under severe 

threat of extinction, probably due to diclofenac 
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use (Prakash et al. 2007, Cuthbert et al. 2014) 

and faced fierce competition for food 

resources from the migratory species. Another 

essential reason is habitat loss due to various 

anthropogenic activities (Baral et al. 2013, 

Pande et al. 2013). However, Prakash et al. 

(2012, 2017) reported a slowing down of the 

decline leading to the stabilization of the 

vulture population in India. Further, vulture 

monitoring in MP indicated increases in 

vulture individuals in recent times (office 

record of vulture censuses 2016 and 2019; MP 

Forest Department). This highlights the 

importance of habitat in the recovery of 

vultures. To encourage such recovery further 

and to regain the lost vulture glory, the 

knowledge of habitat expanse and its quality 

becomes very important in the scientific 

management of vulture.  

Habitat characterization depends on 

environmental factors, like landuse-landcover 

(LULC), human influence on resources, and 

climatic conditions of the area, which finally 

decide the distribution of the population. This 

could be achieved by indexing the habitat or 

developing the habitat suitability index (HSI), 

which is a probability of species presence 

inferred from ecological niche modeling by 

relating the occurrence of a species at a given 

location to environmental features (Guisan and 

Thuiller 2005). The output of species 

distribution models (SDMs) based on such 

niche modeling is considered as a measure of 

the suitability of environmental features for the 

occurrence of the target species (VanDerWal 

et al. 2009). In recent years, significant 

advances have been made in the statistical 

tools and techniques used to generate SDMs 

(Guisan and Zimmermann 2000, Guisan and 

Thuiller 2005, Elith and Leathwick 2009). 

SDMs predict species occurrence using 

mathematical models based on field data and 

environmental variables (Phillips et al. 2006), 

which can indicate the suitability of habitats 

for developing populations of a particular 

species or community (Ferrier 2002). 

Statistical methods employed for formulating 

SDMs include those requiring 

presence/absence data. One such model - 

maximum entropy (MaxEnt) based only on 

presence data (Phillips et al. 2006, Phillips and 

Dudík 2008) was used in habitat distribution 

range studies mostly in threatened plants and 

animals (Angelieri et al. 2016, Hernandez-Baz 

et al. 2016, Qin et al. 2017, Abolmaali et al. 

2018, Corovic et al. 2018, Esfanzani et al. 

2018). Still, it lacks in most important 

scavengers like endangered vultures. 

Therefore, this paper is aimed at (1) mapping 

habitat suitability of vulture species in Central 

India (2) determining the relative contribution 

of environmental variables to species habitat 

suitability (3) identifying and comparing the 

habitat expanse of different vulture species and 

(4) exploring some management implication. 

Material and methods 
Study area 

The Central Indian province (Madhya Pradesh, 

308252 km2), was chosen for habitat 

suitability or niche-based modeling since it has 

high richness and abundance of vultures. This 

province is situated between 21o6’- 26 o30’ 

North latitude and 74 o00’- 82 o51’ East 

longitude in the tropical and sub-tropical 

climate. The temperature varies between 1oC 

and 47oC from winter to summer. The average 

rainfall is about 1370 mm, which decreases 

from east (2150 mm) to west (1000 mm). The 

state falls in three climatic regions of India – 

Semi-arid in the northwest, Tropical wet and 

dry in the southwest, and Sub-tropical wet and 

dry in the remaining, much larger part. It has 

hilly tracts, valley, and plateau with sylvan and 

agriculture landscapes. Waterbodies, including 

rivers, lakes, and streams, are interspersed 

throughout the state. Approximately 52% and 

28% area of the state has agriculture and forest 

LULC, respectively. Different types of forests 

by density cover are as follows: 2.15% Very 

dense, 11.35% Moderately dense, 11.7% 

Open, and 2.08% Scrub (ISFR 2011). These 

forests mostly belong to Tropical dry 

deciduous and moist deciduous types. 
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Species occurrence data 

Vulture presence data was taken from field 

observation recorded during the vulture census 

of the state, which was done during winter and 

summer 2016 following a specific protocol 

(Jha 2017). Single-day point count by a two-

member team (covering 3 to 4 locations) of 

nesting/roosting (sitting not flying) vultures in 

the morning hours (between 06:00 and 10:00 

h) in the whole state was done. Of a total of 

recorded 1510 presence locations (species-

wise), there were 761 and 749 location 

(sighting) in these two seasons, respectively. 

Coordinates of these locations were taken by 

Garmin GPS and were used as sample input 

(spatial data) in SDM software MaxEnt after 

processing. 

Environmental variables 

Locational information on environmental 

factors associated with the species is used in 

SDMs. Such models estimate the relationship 

between a species and its environment and 

then predict a distribution based on the 

occurrence of the identified environmental 

variables across the landscape under study 

(Guisan and Zimmerman 2000, Guisan and 

Thuiller 2005). A suite of environmental 

variables was used, which are acronymed / 

coded in the literature (Tytar and Nekrasova 

2016, Prockow et al. 2018) as given in Table 

1. Depending on the relationship with the 

species, other variables were also used. 

Vultures are known to use cliffs and tall trees 

which provide safe shelter for nesting. 

Vegetation cover is reported to influence the 

distribution of an animal species more than 

any other factor since it determines the land’s 

ability to supply food and/or shelter to 

animals. In other words, it may be a limiting 

factor for the spread of a species (Herrero et 

al. 2006, Bosch et al. 2014). Studies have 

included elevation (Angelieri et al. 2016, Qin 

et al. 2017), LULC (Yang et al. 2013), and 

vegetation as the driving factors for species 

distribution. Quite a few reports (Zhao et al. 

2015, Lu et al. 2017, Janssen et al. 2018, Li et 

al. 2018, Liang 2018) have shown some 

relationship between Normalized 

Differentiated Vegetation Index (NDVI) and 

vegetation parameter (forest cover and land 

cover change). Santangeli et al. (2018) 

advocated that NDVI can be used as a proxy 

for ungulate forage availability, which is 

inversely correlated with their mortality. The 

increased ungulate mortality resulting from 

below-average forage availability (i.e., low 

NDVI) likely leads to increased carrion 

availability for vultures. The model prediction 

was found to be improved after the inclusion 

of land cover in pheasant distribution (Dunn et 

al. 2015). Therefore, elevation, LULC, and 

NDVI were included along with the above 

climatic variables. Landuse-land cover data 

was procured from the State Organization, MP 

Council of Science and Technology, Bhopal. 

This included different layers like forests, 

water bodies, built-up area, wasteland, 

agriculture, and wasteland scrub. Thus, there 

were a total of 23 variables or covariates (19 

Bioclim variables, two NDVI layers, one 

LULC layer, and one elevation layer) to be 

used in the models (Table 1). However, the 

literature review (Yang et al. 2013, Fourcade 

et al. 2014, Ashraf et al. 2016, Keya et al. 

2016, Abolmaali et al. 2018) suggested the 

examination of cross-correlations among the 

variables to account for multicollinearity, since 

ignoring the spatial autocorrelation and 

multicollinearity may lead to false ecological 

conclusions in modeling the spatial 

distribution of a species (Heikkinen et al. 

2006, de Frutos et al. 2007). We used the 

Pearson correlation test and r > 0.8 as the cut-

off threshold to determine highly correlated 

variables (Khanum et al. 2013, Ashraf et al. 

2016, Cao et al. 2016). This led to the decision 

to remove certain variables from the current 

climate data used over the period 1950–2000.  

Data file preparation 

The Bioclim variables were downloaded from 

www.worldclim.org/bioclim. The downloaded 

file had “0.00833 * 0.00833” cell size spatial 
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resolution with “GCS_WGS_1984” projection. 

NDVI data was downloaded from 

www.earthexplorer.usgs.gov. MODIS 

(Moderate Resolution Imaging 

Spectroradiometer) data was downloaded for 

January and May in the year 2016 because the 

actual survey was done in the same months, 

and the canopy of the forests also varied 

contrastingly. These data had a spatial 

resolution of “231.6563583 * 231.6563583” 

with undefined projection. Elevation data was 

also downloaded from 

www.earthexplorer.usgs.gov with spatial 

resolution “0.00833 * 0.00833” and 

GCS_WGS_1984 projection. Fifty-four tiles 

were downloaded, mosaicked together, and 

clipped with CI shapefile. 

All the layers were projected to 

WGS_1984_UTM_Zone_43N, and cell size 

was changed with reference to the MODIS 

data because it had the smallest cell size or 

highest spatial resolution. The files were 

masked with the shapefile after re-projecting 

and checked every layer had the same spatial 

resolution and processing extent. The layers 

had to be re-projected again to the 

GCS_WGS_1984 system because the software 

did not accept the files with 

WGS_1984_UTM_Zone_43N projection. The 

GPS data of vulture presence were pooled and 

used in the CSV format as per the requirement 

of the software.  
 

Table 1. Variables used in the current vulture habitat prediction 

Climatic Environmental 

Temperature Precipitation 

Variable Acronym Variable Acronym 

(i) Annual Mean 

Temperature 

bio1 (xii) Annual 

Precipitation 

bio12 LULC (Forest, water, rural and 

urban built-up area, agriculture, 

wasteland, scrubland) 

(ii) Mean Diurnal Range 

(Mean of monthly (max 

temp - min temp)) 

bio2 (xiii) Precipitation of 

Wettest Month 

bio13 NDVI (May and June 2016) 

(iii) Isothermality 

(bio2/bio7) (* 100) 

bio3 (xiv) Precipitation of 

Driest Month 

bio14 Elevation 

  (iv) Temperature 

Seasonality (standard 

deviation *100) 

bio4 (xv) Precipitation 

Seasonality 

(Coefficient of 

Variation) 

bio15  

(v) Max Temperature of 

Warmest Month 

bio5 (xvi) Precipitation of 

Wettest Quarter 

bio16  

(vi) Min Temperature of 

Coldest Month 

bio6 (xvii) Precipitation of 

Driest Quarter 

bio17  

(vii) Temperature 

Annual Range (bio5-

bio6) 

bio7 (xviii) Precipitation of 

Warmest Quarter 

bio18  

(viii) Mean Temperature 

of Wettest Quarter 

bio8 (xix) Precipitation of 

Coldest Quarter 

bio19  

(ix) Mean Temperature 

of Driest Quarter 

bio9    

(x) Mean Temperature of 

Warmest Quarter 

bio10    

(xi) Mean Temperature 

of Coldest Quarter 

bio11    

 

Species distribution modeling 

MaxEnt (4.3.1) was chosen for the present 

study among many SDMs (GARP, ENFA, 

BIOCLIM, DOMAIN) frequently used for 

habitat prediction (Cao et al. 2016, Qin et al. 

2017), since this algorithm is highly precise, is 

ranked among the best when absence data for 

the species are not available, and seems to 



95 | Journal of Wildlife and Biodiversity 4(3): 91-111 (2020) 

 

outperform other modeling methods in quality 

and predictive power when the number of 

geographic records is scarce (Elith et al. 2006, 

Phillips et al. 2006, Phillips and Dudik 2008, 

Wisz et al. 2008, Corovic et al. 2018). While 

running the model, the model output chosen 

was logistic, model testing data selected was 

25%, and the replicated run type was 

bootstrap. Jackknife analysis was performed to 

determine variables, and Area Under the 

Receiving Operator Curve (AUC) was taken 

into account for model evaluation. The model 

with the highest AUC value was considered 

the best performer. 

MaxEnt models predicting the presence of 

vultures were imported to ArcGIS 10.3 for 

display maps and further analysis like area 

calculation, file export for correlation, etc. 

Yang et al. (2013) and Qin et al. (2017) were 

consulted for classifying the prediction range 

for suitability of habitat. Prediction range (0–

1) was divided into five HSI classes of 

potential habitats. They were arbitrarily 

regrouped as Negligibly suitable habitat (0–

0.2); Slightly suitable habitat (0.2–0.4); 

Moderately suitable habitat (0.4–0.6); Highly 

suitable habitat (0.6–0.8); Extremely suitable 

habitat (0.8–1.0). Schematic representation of 

MaxEnt input preparation and the expected 

output is presented in figure 1. 

 

 

Figure 1. Abstract of the methodology adopted in the present study, which includes MaxEnt based 

modeling, preceding steps, and model output. Flow chart modified from Ashraf et al. (2016) 
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Results 
Pooled summer and winter vulture location 

points of 2016 in CI are depicted in Figure 2. 

Using coordinates of these points and different 

variables, we ran 8 test models having high 

AUC values. Subsequently developed the 

same number of final models for all vulture 

species together and seven different species 

found in central India (Cinereous Vulture, 

Eurasian Griffon and Himalayan Griffon; the 

migratory species coming from European, and 

other Asian countries and Egyptian Vulture, 

Long-billed Vulture, Red-headed Vulture, and 

White-rumped Vulture; the resident species). 

AUC of different models varied among 

themselves, but the average was 0.943 (Test 

run), and 0.938 (Final run). None of the AUC 

was lower than 0.899 (Test) and 0.889 (Final). 

The Pearson correlation test (r > 0.8) with 

bioclimatic and other variables showed a high 

correlation among some of them (Table 2). 

Therefore, a set of such five variables like bio1 

(Annual Mean Temperature), bio7 

(Temperature Annual Range), bio10 (Mean 

Temperature of Warmest Quarter), bio12 

(Annual Precipitation), bio16 (Precipitation of 

Wettest Quarter) was eliminated to reduce 

collinearity effect from the modeling and to 

improve prediction.  

Among all the variables used for habitat 

prediction, LULC was found to be the most 

important variable impacting the distribution 

model. Analysis of the variable contribution 

table of MaxEnt models showed the average 

contribution of LULC across all the models to 

the quantum of 54.9%. Different species were 

influenced by this variable in the following 

order of decrement: Himalayan Griffon (74.2) 

> Cinereous Vulture (59.9) > Eurasian Griffon 

(57.3) > Long-billed Vulture (54.7) > Red-

headed Vulture (52.0) > Egyptian Vulture 

(51.1) > White-rumped Vulture (35.5). 

However, within this categorical parameter, 

forest, waterbody, and rural-urban built-up 

area influenced the scavenger’s distribution 

the most. Agriculture, wasteland, and 

scrubland were found to be the least impactful 

(Fig. 3). It is evident from the LULC response 

chart that for all vulture species, the two most 

important components were forest and water. 

Out of these two components, migratory 

species and Egyptian vulture showed a 

preference for forest over water in habitat 

selection while other resident vultures 

preferred water. 

Jackknife diagram predicting the contribution 

of variables to the construction of the model is 

presented in Figures 4 and 5. The dark blue 

bars show the value of the variable 

independent of others, the light-blue bars show 

the result of excluding the variable from the 

prediction across the entire set of variables, 

and the red bar demonstrates the total 

contribution of all the variables. This chart 

indicates that across all species the five most 

important variables apart from LULC were 

bio3 (Isothermality), bio15 (Precipitation 

Seasonality), bio18 (Precipitation of Warmest 

Quarter), bio4 (Temperature Seasonality) and 

bio11 (Mean Temperature of Coldest Quarter) 

which played a significant role in habitat 

quality determination or species distribution. 

Isothermality (bio3) and Precipitation 

Seasonality (bio15) were the top contributors 

in almost all the models. Other lesser essential 

variables were bio8 (Mean Temperature of 

Wettest Quarter), bio2 (Mean Diurnal Range 

of temperature), and January NDVI. Elevation, 

in this case, had very little or practically no 

impact on distribution. 

Vulture habitat suitability maps are presented 

in Figures 6 and 7. Non-suitable (Negligibly 

suitable) and potentially suitable habitat 

(slightly, moderately, highly, and extremely 

suitable) area of different species of vultures 

derived from the model maps are presented in 

Table 3. A majority of the area of Central 

India is found to be negligibly or not suitable 

(77.3% to 89.3%) for vultures under current 

climatic conditions and natural resources. 

However, the potentially suitable area 

available for different vultures in decreasing 

order is 22.7% (Himalayan Griffon), 18.6% 

(Long-billed Vulture), 17.4% (Egyptian 
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vulture), 16.6% (Cinereous Vulture), 13.6% 

(Eurasian Griffon), 12.7% (White-rumped 

Vulture) and 10.7% (Red-headed Vulture). 

 

 

Figure 2. Combined location map of different species of vultures with respect to major landuse-landcover 

in Central India during the winter and summer survey of 2016. This presence only record was used in 

Species Distribution Model, MaxEnt, as sample input. Map: Adopted from Jha (2018) 

 

 

 

Figure 3. Contribution of different 

LULC components in model 

prediction. 1 Rural and Urban built-

up, 2 Road and Mine built-up, 3 

Agriculture, 4 Forest, 5 Wasteland, 

6 Scrubland, and 7 Waterbody. 

Charts in the left column: top to 

bottom - All vultures, Cinereous 

Vulture, Eurasian Griffon, 

Himalayan Griffon. Charts in the 

right column: top to bottom – 

Egyptian, Long-billed, Red-headed, 

and White-rumped vultures 
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Table 2. Correlation matrix among environmental and natural resource variables (Elev'n = Elevation, ndvij = NDVI January, and ndvim = NDVI May). 

 

Elev'n ndvij ndvim bio1 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 LULC 

Elev'n 1.00 

                      
ndvij 0.33 1.00 

                     
ndvim 0.50 0.71 1.00 

                    
bio1 -0.68 -0.54 -0.66 1.00 

                   
bio2 -0.52 -0.16 -0.37 0.20 1.00 

                  
bio3 0.25 -0.15 -0.14 0.09 0.27 1.00 

                 

bio4 -0.73 -0.17 -0.32 0.25 0.75 

-

0.37 1.00 

                

bio5 -0.82 -0.39 -0.65 0.74 0.68 
-

0.04 0.68 1.00 

               

bio6 0.35 -0.11 0.01 0.24 

-

0.80 0.17 

-

0.83 

-

0.34 1.00 
              

bio7 -0.65 -0.10 -0.32 0.17 0.91 

-

0.14 0.93 0.72 

-

0.89 1.00 

             

bio8 -0.84 -0.50 -0.60 0.80 0.47 
-

0.15 0.71 0.77 
-

0.26 0.55 1.00 

            

bio9 -0.31 -0.07 -0.23 0.25 

-

0.08 

-

0.48 0.20 0.31 0.03 0.13 0.20 1.00 
           

bio10 -0.87 -0.45 -0.66 0.86 0.56 

-

0.13 0.67 0.95 

-

0.24 0.63 0.89 0.35 1.00 

          

bio11 0.19 -0.20 -0.17 0.46 
-

0.53 0.38 
-

0.73 
-

0.07 0.91 
-

0.70 
-

0.12 0.03 0.00 1.00 

         

bio12 0.59 0.52 0.54 

-

0.67 

-

0.48 

-

0.17 

-

0.52 

-

0.57 0.20 

-

0.42 

-

0.82 0.15 -0.67 0.06 1.00 
        

bio13 0.56 0.51 0.52 

-

0.62 

-

0.45 

-

0.15 

-

0.49 

-

0.54 0.19 

-

0.40 

-

0.78 0.11 -0.62 0.07 0.97 1.00 

       

bio14 0.51 0.46 0.50 
-

0.74 
-

0.31 
-

0.19 
-

0.29 
-

0.55 
-

0.04 
-

0.24 
-

0.68 0.10 -0.65 -0.22 0.75 0.64 1.00 

      

bio15 -0.32 -0.37 -0.35 0.53 0.28 0.27 0.23 0.33 

-

0.02 0.17 0.52 

-

0.23 0.46 0.14 -0.67 -0.50 -0.79 1.00 
     

bio16 0.60 0.49 0.51 

-

0.62 

-

0.51 

-

0.14 

-

0.56 

-

0.58 0.26 

-

0.47 

-

0.82 0.14 -0.66 0.13 0.99 0.98 0.67 -0.56 1.00 

    

bio17 0.41 0.53 0.54 
-

0.74 
-

0.24 
-

0.31 
-

0.18 
-

0.48 
-

0.15 
-

0.12 
-

0.63 0.07 -0.59 -0.32 0.77 0.69 0.92 -0.82 0.68 1.00 

   

bio18 0.45 0.45 0.47 

-

0.62 

-

0.32 

-

0.10 

-

0.37 

-

0.49 0.08 

-

0.29 

-

0.66 0.10 -0.60 -0.06 0.80 0.72 0.75 -0.77 0.73 0.78 1.00 
  

bio19 0.02 0.44 0.27 

-

0.46 0.00 

-

0.55 0.20 

-

0.04 

-

0.36 0.24 

-

0.31 0.47 -0.15 -0.44 0.63 0.57 0.66 -0.72 0.54 0.79 0.60 1.00 

 

LULC -0.09 -0.18 -0.04 0.09 
-

0.10 
-

0.04 
-

0.05 0.03 0.13 
-

0.08 0.04 
-

0.07 0.03 0.10 -0.09 -0.09 -0.08 0.09 -0.08 -0.09 -0.09 -0.15 1.00 
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Table 3. Habitat area (km2) of different categories for the use of vulture species in Central India  
 

Vulture species 

 

Suitability 

parameter 

Negligibly 

Suitable 

Slightly 

Suitable 

Moderately 

Suitable 

Highly 

Suitable 

Extremely 

Suitable 

Cinereous Vulture 

 

Area km2 254281.4 17048.4 20228.2 12517.8 704.7 

% area 83.4 5.6 6.6 4.1 0.2 

Eurasian Griffon 

 

Area km2 263208.6 20819.9 13228.8 6562.9 960.2 

% area 86.4 6.8 4.3 2.2 0.3 

Himalayan Griffon 

 

Area km2 235672.5 27074.7 19284.0 22570.5 178.7 

% area 77.3 8.9 6.3 7.4 0.1 

Egyptian Vulture 

 

Area km2 251722.5 25258.3 21690.3 5430.9 678.5 

% area 82.6 8.3 7.1 1.8 0.2 

Long-billed Vulture 

 

Area km2 248034.6 26250.6 22521.7 7639.4 334.2 

% area 81.4 8.6 7.4 2.5 0.1 

Red-headed Vulture 

 

Area km2 272021.1 17079.2 9900.7 5346.1 433.4 

% area 89.3 5.6 3.2 1.8 0.1 

White-rumped Vulture 

Area km2 266116.0 22749.0 10590.9 4827.5 497.2 

% area 87.3 7.5 3.5 1.6 0.2 

All vultures 

 

Area km2 239455.5 31139.0 25382.8 8709.4 93.7 

% area 78.6 10.2 8.3 2.9 0.03 

 

Discussion 

In recent years, the development of habitat 

distribution models has increased with the rise 

of GIS tools and statistical techniques in 

ecology. Such models relate the geographical 

distribution of the species and the features of 

their present environment. They are static and 

probabilistic (Guisan and Zimmermann 2000). 

Nevertheless, they can identify additional 

localities where the target species may already 

exist but have not yet been detected, recognize 

the localities where it can spread, and help 

prioritize the selection of area for conservation 

of rare species (Qin et al. 2017). In the present 

study, potential suitable habitat area was 

identified by using MaxEnt species distribution 

modeling for current climatic scenario, and 

mapping was done. The evaluation of the 

performance of the models, and the impact of 

environment variables on vulture habitat and 

habitat extent suitability have been discussed in 

the following paragraphs which can be used for 

addressing conservation problems of the 

vultures (Brotons et al. 2004, Linkie et al. 

2006, Rodriguez et al. 2007). 

Model performance 

Area Under Curve of ROC (Receiver Operating 

Characteristic) curve, a preferred technique to 

evaluate models, was used to estimate the 

accuracy of the final models (Stockwell and 

Peters 1999, Bosch et al. 2014) in the present 

study as well. The closer the AUC value to 1, 

the greater is the accuracy of the model, while 

the values of 0.5 suggested that the model 

performs no better than random (Bosch et al. 

2014). Such a high AUC value (0.938) of final 

models in the present study fell in the very 

good category of model performance as 

suggested (i.e., AUC: >0.9 = very good; AUC: 

0.7–0.9 = good, AUC: <0.7 = uninformative) 

by Swets (1988), Baldwin et al. (2009), Lv et 

al. (2012) etc. Other studies (Pearce and Ferrier 

2000, Newbold et al. 2009, Hernandez-Baz et 

al. 2016) also indicated values above 0.9 as the 

highest accuracy of the model. Simple 

implication of this result is that model 

prediction level is very high which can be used 

with higher degree of confidence in planning 

and execution of the conservation project.  
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Figure 4. The relative predictive power of different environmental variables based on the jackknife of regularized 

training gain in MaxEnt models for all and migratory vultures. The dark blue bars show the value of the variable 

independent of others. All the species combined and the other three migrant species show that the LULC is the 

essential variable. Elevation was among the least important variables 

 

Environmental predictors 

Of all environmental layers used in the model, 

LULC had the most considerable influence on 

suitable habitat prediction. However, among 

them, the forest was the most important 

determinant, like other reports of vegetation 

(Howard et al. 2012, Hernandez-Baz et al. 

2016). The presence of the water body was the 

next equally important factor governing habitat 

suitability as also reported heuristically by 

Kanaujia and Kushwaha (2014) in the case of 

vultures. This is in line with another reporting 

in waterbird metapopulations that geographic 

parameters such as the prevalence of water 

bodies and forested land are critical predictors 

for the distribution of species (Sheehan et al. 

2016). The urban and rural built-up areas 

provide some of the vulture species 

opportunities for food. Vultures are seen 

exploiting garbage dumps, bone meal, and solid 

waste processing factories in urban areas 

(Buechley et al. 2018, Angelov et al. 2020) as 

well as setting up colonies near villages (Jha 

2015, Henriques et al. 2018). Other than 

natural resources, climatic variables also played 

their role in habitat suitability. Abiotic factors 



101 | Journal of Wildlife and Biodiversity 4(3): 91-111 (2020) 

 

such as temperature, precipitation, and 

humidity may have a more considerable 

influence on the distribution of some organisms 

or biodiversity (Hawkins and Porter 2003a, b, 

Begon et al. 2006, Whittaker et al. 2007, 

Corovic et al. 2018). There is evidence that 

rainfall patterns influence the success of vulture 

breeding (Bridgeford and Bridgeford 2003, 

Virani et al. 2012). Temperature change also 

governs the reproduction of vultures, causing 

stress directly to the animal (Chaudhry 2007 

and Schultz 2007 in Phipps et al. 2017, 

Bamford et al. 2009, Midgley and Bond 2015).

  

  
Figure 5. The relative predictive power of different environmental variables based on the jackknife of regularized 

training gain in MaxEnt models for resident vultures. The dark blue bars show the value of the variable independent 

of others. In all the three resident vultures (Egyptian, Long-billed and Red-headed) the LULC  (land use-land cover) 

was the most crucial variable except White-rumped Vulture, where it was second most important after bio 15. 

Elevation was among the least important variables 

 

 

Agreeing with these findings, our models also 

emphasized particularly on temperature 

(isothermality, temperature seasonality, and 

mean temperature of the coldest quarter) and 

precipitation (precipitation seasonality and 

precipitation of warmest quarter) variables as 

important contributors of habitat suitability. 

The two top contributors in almost all the 

species were isothermality and precipitation 

seasonality. The very low contribution of 



102 | Journal of Wildlife and Biodiversity 4(3): 91-111 (2020) 

 

agriculture may be due to the inability of the 

agriculture landscape to meet the primary 

requirement of safe nesting and roosting as it 

lacks tall trees and high cliffs. Elevation also 

has a low contribution as it generally controls 

the edapho-climatic conditions which do not 

significantly impact vultures, unlike in the 

case of plants. Moreover, the plateau and hills 

in central India are low on elevation (average 

<500m, maximum 1000m). The insignificant 

role of NDVI, which was used as a proxy for 

food availability appears to be contradictory 

since food availability is the significant and 

limiting component of vulture habitat. 

Therefore, the inclusion of livestock and 

wildlife providing carrion as direct input in the 

model should be included to get better results. 

More parameters characterizing the habitat 

like disturbance causing factors (proximity to 

traffic, settlement, etc.), aspect of the slope, 

etc. may help in the robustness of model 

prediction as they influence vulture population 

(Vlachos et al. 1998, Liberatori and Penteriani 

2001, Marinkovic et al. 2012, Sen et al. 2017). 
 

 
 

Figure 6. Habitat suitability maps of all and migratory vultures. Classified area differences could be marked for 

different species. Colour other than yucca yellow indicates a suitable area of varying degrees for different species 

 

Area Suitability  

The least potential area was mostly covered by 

agriculture and wasteland scrub, while other 

potential areas were covered by forests and 

hilly tracts. Variation in the suitable area 

seemed to be linked with habitat availability, 

requirement, and choice of the species. For 

example, Red-headed Vulture and White-

rumped Vulture among the resident ones, have 

a lower area in comparison to others since they 
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nest almost exclusively on taller trees in forest 

area (Thakur and Kataria 2012, Thakur and 

Narang 2012, Khatri 2015, Sinha et al. 2017, 

Majgaonkar et al. 2018, Ahmad et al. 2020). 

Other resident species like Egyptian vultures 

have a more suitable habitat area since they 

frequent outside forests and prefer cliff-nesting 

as well as trees (Donazar et al. 2002, Milchev 

et al. 2012, Zuberogoitia et al. 2014). Long-

billed vulture, though cliff nesters 

(Venkitachalam and Senthilnathan 2015), also 

have a more substantial area due to the 

availability of cliffs in undulating terrain in 

plenty in the state. They also nested on heritage 

monuments and occasionally on trees 

(Kushwaha and Kanaujia 2009). Himalayan 

Griffon and Cinereous Vultures, primarily cliff 

nesters (Mihoub et al. 2013), have a larger 

suitable area since they have to just roost in the 

region and do not have any specific 

requirement of cliff or trees, though can nest in 

both (Purohit and Saran 2013). They possibly 

look mostly for safety during roosting in a 

larger area of the state. Eurasian Griffon, 

another cliff-nester (Garcia-Ripolles et al. 

2005, Marinkovic et al. 2012, Freund et al. 

2017) with no nesting requirement during 

migration, may have lesser adaptability to 

varied landscapes of the state, therefore, have 

the lesser suitable area as compared to 

Cinereous Vulture and Himalayan Griffon. 

Moreover, some vultures are the most selective 

species concerning environmental 

characteristics. In contrast, a few (Eurasian 

Griffon and the Egyptian Vulture) display a 

higher degree of ecological plasticity 

(Margalida et al. 2007). Nevertheless, quality-

wise and species wise details of habitat area 

identified in the study, though overlapping, 

would be useful in preparing a vulture 

conservation action plan and incorporating it in 

the management plan of Forest Divisions or 

Protected Areas of the state.  

Management implication 

Detailed and reliable information about the 

spatial distribution of a species provides 

essential information for species management, 

especially in the case of rare species of 

conservation interest (Qin et al. 2017). Our 

study, based on highly accurate MaxEnt 

models, provided the first predicted potential 

habitat distribution map for an obligatory 

scavenging group of species, vultures, in 

Central India, which supports a considerable 

population of dwindling vultures.  

Prediction and mapping of potentially suitable 

habitat for threatened and endangered vultures 

are critical for monitoring and restoration of 

declining populations in their natural habitat. 

This could be achieved by artificial 

introduction, selection of conservation sites, 

and rehabilitation of the native habitat itself 

(Gaston 1996, Kumar and Stohlgren 2009). 

Since the suitable area, especially of the 

resident vultures, is limited and they are in the 

threatened stage, proper planning and landuse 

management around the existing population 

and further expansion within the predicted 

habitat is essential for the stabilization and 

recovery of the numbers from the pre-

diclofenac era.  

Highly suitable and extremely suitable areas 

could be used for in situ conservation and 

reintroduction of the species in the wild 

(Khosravi et al. 2016), and the least suitable 

and moderately suitable area could be used for 

population expansion by improving habitat 

conditions. If required, a negligibly suitable 

area could also be used for highly plastic 

species by altering the agriculture landscape to 

agroforestry use since vultures are reported to 

nest on smaller trees in rural setups (Kambale 

2011, Khatri 2013, Jha 2015) in the absence of 

larger ones. Incorporation of animal husbandry 

will further strengthen the cause by increasing 

the chances of food availability. This appears 

in line with the expected landuse change in the 

future with an increase in the requirement for 
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livestock products (Mateo-Tomas and Olea 2015).
 

 
 

Figure 7. Habitat suitability maps of resident vultures. Classified area differences could be marked for 

different species. Colour other than yucca yellow indicates a suitable area of varying degrees for different 

species 
 

 Conclusion 

Vulture distribution models developed in 

Central India on the maximum entropy 

principle were of high-performance accuracy 

and prediction was in consonance with other 

studies. Forest and waterbody contributed most 

among environmental factors within LULC, 

which in itself had a significant share in model 

development. The agriculture landscape had 

minimal impact on vulture distribution. The 

two most important climatic variables 

influencing the model were isothermality and 

precipitation seasonality. Elevation had a 

minimum contribution. 

Nevertheless, the inclusion of food availability, 

disturbance causing factors, aspect of the slope, 

vegetation density etc. which have been the 

limitation of this study, may help in further 

improvement of the model prediction. 

Potentially suitable area for species distribution 

varied among migratory and resident groups of 

vultures as well as within the species. 

However, such predicted area in different 

categories could be used for the improvement 

of the threatened status of vultures by doing in 

situ conservation in highly suited areas and 

facilitating population expansion in less suited 

areas. The large chunk of a negligibly suitable 

area in the state could also be turned in favor of 
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vulture conservation by modifying the landuse 

and landcover.  
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